
Verifying Eiffel Programs with Boogie

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

Abstract. Static program verifiers such as Spec#, Dafny, jStar, and
VeriFast define the state of the art in automated functional verification
techniques. The next open challenges are to make verification tools usable
even by programmers not fluent in formal techniques. This paper presents
AutoProof, a verification tool that translates Eiffel programs to Boogie
and uses the Boogie verifier to prove them. In an effort to be usable
with real programs, AutoProof fully supports several advanced object-
oriented features including polymorphism, inheritance, and function ob-
jects. AutoProof also adopts simple strategies to reduce the amount of
annotations needed when verifying programs (e.g., frame conditions).
The paper illustrates the main features of AutoProof’s translation, in-
cluding some whose implementation is underway, and demonstrates them
with examples and a case study.

1 Usable Verification Tools

It is hard to overstate the importance of tools for software verification: tools
have practically demonstrated the impact of general theoretical principles, and
they have brought automation into significant parts of the verification process.
Program provers, in particular, have matured to the point where they can han-
dle complex properties of real programs. For example, provers based on Hoare
semantics—e.g., Spec# [2] and ESC/Java [5]—support models of the heap to
prove properties of object-oriented applications; other tools using separation
logic—e.g., jStar [4] and VeriFast [7]—can reason about complex usages of point-
ers, such as in the visitor, observer, and factory design patterns. The experience
gathered so far has also outlined some design principles, which buttress the de-
velopment on new, improved verification tools; the success of the Spec# project,
for example, has shown the value of using intermediate languages (Boogie [8],
in the case of Spec#) to layer a complex verification process into simpler com-
ponents, which can then be independently improved and reused across different
projects.

The progress of verification tools is manifest, but it is still largely driven
by challenge problems and examples. While case studies will remain important,
verification tools must now also become more practical and usable by “lay” pro-
grammers. In terms of concrete goals, prover tools should support the complete
semantics of their target programming language; they should require minimal
annotational effort besides writing ordinary pre and postconditions of routines
(methods); and they should give valuable feedback when verification fails.

The present paper describes AutoProof, a static verifier for Eiffel programs
that makes some progress towards these goals of increased usability. AutoProof
translates Eiffel programs annotated with contracts (pre and postconditions,
class invariants, intermediate assertions) into Boogie programs. The translation
currently handles sophisticated language features such as exception handling and
function objects (called agents in Eiffel parlance, and delegates in C#). To reduce
the need for additional annotations, AutoProof includes simple syntactic rules to
generate standard frame conditions from postconditions, so that programmers
have to write down explicit frame conditions only in the more complex cases.

This paper outlines the translation of Eiffel programs into Boogie, focusing on
the most original features such as exception handling (which is peculiarly differ-
ent in Eiffel, as opposed to other object-oriented languages such as Java and C#)
and the generation of simple frame conditions. The translation of more standard
constructs is described elsewhere [18]. At the time of writing, AutoProof does not
implement the translation of exceptions described in the paper, but its inclusion
is underway. The paper also reports a case study where we automatically verify
several Eiffel programs, exercising different language features, with AutoProof.
AutoProof is part of EVE (Eiffel Verification Environment), the research branch
of the EiffelStudio integrated development environment, which integrates several
verification techniques and tools. EVE is distributed as free software and freely
available for download at: http://se.inf.ethz.ch/research/eve/

Outline. Section 2 presents the Boogie translation of Eiffel’s exception han-
dling primitives; Section 3 describes a translation of conforming inheritance that
supports polymorphism; Section 4 sketches other features of the translation, such
as the definition of “default” frame conditions; Section 5 illustrates the exam-
ples verified in the case study; Section 6 presents the essential related work, and
Section 7 outlines future work.

2 Exceptions

Eiffel’s exception handling mechanism is different than most object-oriented pro-
gramming languages such as C# and Java. This section presents Eiffel’s mech-
anism (Section 2.1), discusses how to annotate exceptions (Section 2.2), and
describes the translation of Eiffel’s exceptions to Boogie (Section 2.3) with the
help of an example (Section 2.4).

2.1 How Eiffel Exceptions Work

Eiffel exception handlers are specific to each routine, where they occupy an op-
tional rescue clause, which follows the routine body (do). A routine’s rescue
clause is ignored whenever the routine body executes normally. If, instead, ex-
ecuting the routine body triggers an exception, control is transferred to the
rescue clause for exception handling. The exception handler will try to restore
the object state to a condition where the routine can execute normally. To this
end, the body can run more than once, according to the value of an implicit

2

http://se.inf.ethz.ch/research/eve/

variable Retry, local to each routine: when the execution of the handler termi-
nates, if Retry has value True the routine body is run again, otherwise Retry
is False and the pending exception propagates to the rescue clause of the caller
routine.

Figure 1 illustrates the Eiffel exception mechanism with an example. The rou-
tine attempt transmission tries to transmit a message by calling unsafe transmit;
if the latter routine terminates normally, attempt transmission also terminates
normally without executing the rescue clause. On the contrary, an exception
triggered by unsafe transmit transfers control to the rescue clause, which re-
executes the body for max attempts times; if all the attempts fail to execute
successfully, the attribute (field) failed is set and the exception propagates.

attempt transmission (m: STRING)
local

failures : INTEGER
do

failed := False
unsafe transmit (m)

rescue
failures := failures + 1
if failures <max attempts then

Retry := True
else

failed := True
end

end

Fig. 1. An Eiffel routine with exception handler.

2.2 Specifying Exceptions

The postcondition of a routine with rescue clause specifies the program state
both after normal termination and when an exception is triggered. The two
post-states are in general different, hence we introduce a global Boolean variable
ExcV, which is True iff the routine has triggered an exception. Using this aux-
iliary variable, specifying postconditions of routines with exception handlers is
straightforward. For example, the postcondition of routine attempt transmission
in Figure 1 says that failed is False iff the routine executes normally:

attempt transmission (m: STRING)
ensure

ExcV implies failed
not ExcV implies not failed

The example also shows that the execution of a rescue clause behaves as
a loop: a routine r with exception handler r do s1 rescue s2 end behaves as

3

the loop that first executes s1 unconditionally, and then repeats s2 ; s1 until
s1 triggers no exceptions or Retry is False after the execution of s2 (in the
latter case, s1 is not executed anymore). To reason about such implicit loops,
we introduce a rescue invariant [15]; the rescue invariant holds after the first
execution of s1 and after each execution of s2 ; s1. A reasonable rescue invariant
of routine attempt transmission is:

rescue invariant
not ExcV implies not failed
(failures <max attempts) implies not failed

2.3 Eiffel Exceptions in Boogie

The auxiliary variable ExcV becomes a global variable in Boogie, so that every
assertion can reference it. The translation also introduces an additional precon-
dition ExcV = false for every translated routine, because normal calls cannot
occur when exceptions are pending, and adds ExcV to the modifies clause of
every procedure. Then, a routine with body s1 and rescue clause s2 becomes in
Boogie:

∇(s1, excLabel)
excLabel : while (ExcV)

invariant ∇(Irescue);
{

ExcV := false;
Retry := false;
∇(s2, endLabel)
if (¬Retry) {ExcV := true; goto endLabel} ;
∇(s1, excLabel)
}

endLabel:

where ∇(s, l) denotes the Boogie translation ∇(s) of the instruction s, followed
by a jump to label l if s triggers an exception:

∇(s, l) =

{
∇(s ′, l) ; ∇(s ′′, l) if s is the compound s ′ ; s ′′

∇(s) ; if (ExcV) {goto l;} otherwise

Therefore, when the body s1 triggers an exception, ExcV is set and the ex-
ecution enters the rescue loop. On the other hand, an exception that occurs in
the body of s2 jumps out of the loop and to the end of the routine.

The exception handling semantics is only superficially similar to having
control-flow breaking instructions such as break and continue—available in lan-
guages other than Eiffel—inside standard loops: the program locations where the
control flow diverts in case of exception are implicit, hence the translation has
to supply a conditional jump after every instruction that might trigger an ex-
ception. This complicates the semantics of the source code, and correspondingly
the verification of Boogie code translating routines with exception handling.

4

2.4 An Example of Exception Handling in Boogie

Figure 2 shows the translation of the example in Figure 1. To simplify the pre-
sentation, Figure 2 renders the attributes max attempts, failed , and transmitted
(set by unsafe transmit) as variables rather than locations in a heap map. The
loop in lines 22–36 maps the loop induced by the rescue clause, and its invariant
(lines 23–24) is the rescue invariant.

3 Inheritance and Polymorphism

The redefinition of a routine r in a descendant class can strengthen r ’s original
postcondition by adding an ensure then clause, which conjoins the postcondi-
tion in the precursor. The example in Figure 3 illustrates a difficulty occurring
when reasoning about postcondition strengthening in the presence of polymor-
phic types. The deferred (abstract) class EXP models nonnegative integer expres-
sions and provides a routine eval to evaluate the value of an expression object;
even if eval does not have an implementation in EXP, its postcondition spec-
ifies that the evaluation always yields a nonnegative value stored in attribute
last value , which is set as side effect (see Section 4.1). Classes CONST and
PLUS respectively specialize EXP to represent integer (nonnegative) constants
and addition. Class ROOT is a client of the other classes, and its main routine
attaches an object of subclass CONST to a reference with static type EXP, thus
exploiting polymorphism.

The verification goal consists in proving that, after the invocation e.eval
(in class ROOT), eval’s postcondition in class CONST holds, which subsumes
the check statement in the caller. Reasoning about the invocation only based on
the static type EXP of the target e guarantees the postcondition last value ≥ 0,
which is however too weak to establish that last value is exactly 5.

Other approaches, such as Müller’s [13], have targeted these issues in the
context of Hoare logics, but they usually are unsupported by automatic program
verifiers. In particular, with the Boogie translation of polymorphic assignment
implemented in Spec#, we can verify the assertion check e. last value = 5 end
in class ROOT only if eval is declared pure; eval is, however, not pure. The Spec#
methodology selects the pre and postconditions according to static types for non-
pure routines: the call e.eval only establishes e. last value ≥ 0, not the stronger
e. last value = 5 that follows from e’s dynamic type CONST, unless an explicit
cast redefines the type CONST. The rest of the section describes the solution
implemented in AutoProof, which handles contracts of redefined routines.

3.1 Polymorphism in Boogie

The Boogie translation implemented in AutoProof can handle polymorphism
appropriately even for non-pure routines; it is based on a methodology for
agents [14] and on a methodology for pure routines [3,10]. The rest of the sec-
tion discusses how to translate postconditions of redefined routines in a way

5

1 var max attempts: int; var failed :bool; var transmitted:bool;
2
3 procedure unsafe transmit (m: ref);
4 free requires ExcV = false ;
5 modifies ExcV, transmitted;
6 ensures ExcV ⇐⇒ ¬ transmitted ;
7
8 procedure attempt transmission (m: ref);
9 free requires ExcV = false ;

10 modifies ExcV, transmitted, max attempts, failed;
11 ensures ExcV ⇐⇒ failed ;
12
13 implementation attempt transmission (m: ref)
14 {
15 var failures : int;
16 var Retry: bool;
17 entry:
18 failures := 0; Retry := false;
19 failed := false ;
20 call unsafe transmit (m); if (ExcV) { goto excL; }
21 excL:
22 while (ExcV)
23 invariant ¬ExcV =⇒¬ failed ;
24 invariant (failures <max attempts) =⇒ ¬ failed ;
25 {
26 ExcV := false; Retry := false;
27 failures := failures + 1;
28 if (failures <max attempts) {
29 Retry := true;
30 } else {
31 failed := true;
32 }
33 if (¬ Retry) {ExcV := true; goto endL;}
34 failed := false
35 call unsafe transmit (m); if (ExcV) { goto excL; }
36 }
37 endL: return;
38 }

Fig. 2. Boogie translation of the Eiffel routine in Figure 1.

6

deferred class EXP
feature

last value : INTEGER
eval

deferred
ensure

last value ≥ 0
end

end

class PLUS inherit EXP feature
left , right : EXP
eval do

left . eval ; right . eval
last value := left . last value +

right . last value
ensure then

last value = left . last value +
right . last value

end
invariant

no aliasing : left 6= right 6=Current
end

class CONST inherit EXP
feature

value : INTEGER
eval

do
last value := value

ensure then
last value = value

end
invariant

positive value : value ≥ 0
end

class ROOT
feature

main
local

e: EXP
do

e := create {CONST}.make (5);
e. eval
check e. last value = 5 end

end
end

Fig. 3. Nonnegative integer expressions.

that accommodates polymorphism, while still supporting modular reasoning.
Eiffel also supports weakening of preconditions in redefined routines; the trans-
lation to Boogie handles it similarly as for postconditions (we do not discuss it
for brevity).

The translation of the postcondition of a routine r of class X with result
type T (if any) relies on an auxiliary function post .X.r:

function post.X.r (h1, h2: HeapType; c: ref; res : T) returns (bool);

which predicates over two heaps (the pre and post-states in r ’s postcondition), a
reference c to the current object, and the result res. r ’s postcondition in Boogie
references the function post .X.r, and it includes the translation ∇post(X .r) of
r ’s postcondition clause syntactically declared in class X:

procedure X.r (Current: ref) returns (Result: T);
free ensures post.X.r (Heap, old(Heap), Current, Result);
ensures ∇post(X .r)

7

post .X.r is a free ensures, hence it is ignored when proving r ’s implementation
and is only necessary to reason about usages of r .

The function post .X.r holds only for the type X ; for each class Y which is
a descendant of X (and for X itself), an axiom links r ’s postcondition in X to
r ’s strengthened postcondition in Y :

axiom (∀ h1, h2: HeapType; c: ref; r : T •
$type(c) <: Y =⇒(post.X.r(h1, h2, c, r) =⇒ ∇post(Y .r))) ;

The function $type returns the type of a given reference, hence the postcondition
predicate post .X .r implies an actual postcondition ∇post(Y .r) according to c’s
dynamic type.

In addition, for each redefinition of r in a descendant class Z , the translation
defines a fresh Boogie procedure Z .r with corresponding postcondition predicate
post .Z .r and axioms for all of Z ’s descendants.

1 function post.EXP.eval(h1, h2: HeapType; c: ref) returns (bool);
2
3 procedure EXP.eval(current: ref);
4 free ensures post.EXP.eval(Heap, old(Heap), current, result);
5 ensures Heap[current, last value] ≥ 0;
6 // precondition and frame condition omitted
7
8 axiom (∀ h1, h2: HeapType; o: ref •
9 $type(o) <: EXP =⇒

10 (post .EXP.eval(h1, h2, o) =⇒ (h1[o, last value] ≥0))) ;
11 axiom (∀ h1, h2: HeapType; o: ref •
12 $type(o) <: CONST =⇒
13 (post .EXP.eval(h1, h2, o) =⇒ h1[o, last value] = h1[o, value])) ;
14
15 implementation ROOT.main (Current: ref) {
16 var e: ref ;
17 entry:
18 // translation of create {CONST} e.make (5)
19 havoc e;
20 assume Heap[e, $allocated] = false ;
21 Heap[e, $ allocated] := true;
22 assume $type(e) =CONST;
23 call CONST.make(e, 5);
24 // translation of e. eval
25 call EXP.eval(e);
26 // translation of check e. last value = 5 end
27 assert Heap[e, last value] = 5;
28 return;
29 }

Fig. 4. Boogie translation of the Eiffel classes in Figure 3.

8

3.2 An Example of Polymorphism with Postconditions

Figure 4 shows the essential parts of the Boogie translation of the example in
Figure 3. The translation of routine eval in lines 3–6 references the function
post .EXP.eval; the axioms in lines 8–13 link such function to r ’s postcondition
in EXP (lines 8–10) and to the additional postcondition introduced in CONST
for the same routine (lines 11–13). The rest of the figure shows the translation
of the client class ROOT.

4 Other Features

This section briefly presents other features of the Eiffel-to-Boogie translation.

4.1 Default Frame Conditions

Frame conditions are necessary to reason modularly about heap-manipulating
programs, but they are also an additional annotational burden for programmers.
In several simple cases, however, the frame conditions are straightforward and
can be inferred syntactically from the postconditions. For a routine r , let modr
denote the set of attributes mentioned in r ’s postcondition; modr is a set of
(reference, attribute) pairs. The translation of Eiffel to Boogie implemented in
AutoProof assumes that every attribute in modr may be modified (that is, modr
is r ’s frame), whereas every other location in the heap is not modified. Since
every non-pure routine already includes the whole Heap map in its modifies
clause, the frame condition becomes the postcondition clause:

ensures (∀ o: ref, f : Field • (o, f) /∈ modr =⇒ Heap[o, f] = old(Heap[o, f])) ;

To ensure soundness in the presence of inheritance, the translation always
uses the postcondition of the original routine definition to infer the frame of the
routine’s redefinitions.

The frame conditions inferred by AutoProof work well for routines whose
postconditions only mention attributes of primitive type. For routines that ma-
nipulate more complex data, such as arrays or lists, the default frame conditions
are too coarse-grained, hence programmers have to supplement them with more
detailed annotations. Extending the support for automatically generated frame
conditions is part of future work.

4.2 Routines Used in Contracts Pure by Default

The translation of routines marked as pure generates the frame condition
ensures Heap =old(Heap) which specifies that the heap is unchanged. Auto-
Proof implicitly assumes that every routine used in contracts is pure, and the
translation reflects this assumption and checks its validity. While the Eiffel lan-
guage does not require routines used in contract to be pure, it is a natural
assumption which holds in practice most of the times, because the behavior of a
program should not rely on whether contracts are evaluated or not. Therefore,
including this assumption simplifies the annotational burden and makes using
AutoProof easier in practice.

9

4.3 Agents

The translation of Eiffel to Boogie supports agents (Eiffel’s name for function
objects or delegates). The translation introduces abstract predicates to specify
routines that take function objects as arguments: some axioms link the abstract
predicates to concrete specifications whenever an agent is initialized. The details
of the translation of agents is described elsewhere [14].

5 Case Study

This section presents the results of a case study applying AutoProof to the
verification of the 11 programs listed in Table 1. For each example, the table
reports its name, its size in number of classes and lines of code, the length (in
lines of code) of the translation to Boogie, the time taken by Boogie to verify
successfully the example, and the kind of Eiffel features mostly exercised by the
example.

Example 1 is a set of routines presented in Meyer’s book [12] when describing
Eiffel’s exceptions; Example 2 is a set of classes part of the EiffelStudio compiler
runtime. To verify them, we extended the original contracts with postconditions
to express the behavior when exceptions are triggered, and with rescue invariants
(Section 2.2).1 The most difficult part of verifying these example was inventing
rescue invariants. Even when the examples are simple, the rescue invariants
may be subtle, because they have to include clauses both for normal and for
exceptional termination.

Examples 3–5 target polymorphism in verification. The Expression example
is described in Section 3. The Sequence example models integer sequences with
the deferred classes SEQUENCE, MONOTONE SEQUENCE, and STRICT
SEQUENCE, and their effective descendants ARITHMETIC SEQUENCE, and
FIBONACCI SEQUENCE. The Command example implements the command
design pattern with a deferred class COMMAND and effective descendants that
augment the postcondition of COMMAND’s deferred routine execute. The en-
coding of inheritance described in Section 3 is accurate but it also significantly
increases the size of the Boogie translation and correspondingly the time needed
to handle it. Since a translation that takes dynamic types into account is not
always necessary, future work will introduce an option to have AutoProof trans-
lating contracts solely based on the static type of references.

Examples 6–8 use agents and are the same examples as in [14]. The Formatter
example illustrates the specification of functions taking agents as arguments; the
Archiver example uses an agent with closed arguments; the Calculator example
implements the command design pattern using agents rather than subclasses.

Examples 9–11 combine multiple features: a cell class that stores integer
values; a counter that can be increased and decreased; a bank account class with

1 As the implementation in AutoProof of translation of exceptions is currently under-
way, these two examples were translated by hand.

10

Example name Classes LOC Eiffel LOC Boogie Time [s] Feature

1. Textbook OOSC2 1 106 481 2.33 Exceptions
2. Runtime ISE 4 203 561 2.32 Exceptions

3. Expression 4 134 752 2.11 Inheritance
4. Sequence 5 195 976 2.28 Inheritance
5. Command 4 99 714 2.14 Inheritance

6. Formatter 3 120 761 2.23 Agents
7. Archiver 4 121 915 2.07 Agents
8. Calculator 3 245 1426 9.73 Agents

9. Cell / Recell 3 154 905 2.09 General
10. Counter 2 97 683 2.02 General
11. Account 2 120 669 2.04 General

Total 35 1594 8843 31.36

Table 1. Examples automatically verified with AutoProof

clients. These examples demonstrate other features of the translation, such as
the usage of default frame conditions.

The source code of the examples is available at http://se.ethz.ch/people/
tschannen/boogie2011_examples.zip. The experiments ran on a Windows 7
machine with a 2.71 GHz dual core Intel Pentium processor and 2GB of RAM.

6 Related Work

Tools such as ESC/Java [5] and Spec# [2] have made considerable progress to-
wards practical and automated functional verification. Spec# is an extension of
C# with syntax to express preconditions, postconditions, class invariants, and
non-null types. Spec# is also a verification environment that verifies Spec# pro-
grams by translating them to Boogie—also developed within the same project.
Spec# works on significant examples, but it does not support every feature of
C# (for example, delegates are not handled, and exceptions can only be checked
at runtime). Spec# includes annotations to specify frame conditions, which make
proofs easier but at the price of an additional annotational burden for developers.
To ease the annotational overhead, Spec# adds a default frame condition that
includes all attributes of the target object. This solution has the advantage that
the frame can change with routine redefinitions to include attributes introduced
in the subclasses. AutoProof follows a different approach and tries to rely on
standard annotations whenever possible, which impacts on the programs that
can be verified automatically.

Spec# has shown the advantages of using an intermediate language for ver-
ification. Other tools such as Dafny [9] and Chalice [11], and techniques based
on Region Logic [1], follow this approach, and they also rely on Boogie as in-
termediate language and verification back-end, in the same way as AutoProof
does.

11

http://se.ethz.ch/people/tschannen/boogie2011_examples.zip
http://se.ethz.ch/people/tschannen/boogie2011_examples.zip

Separation logic [16] is an extension of Hoare logic with connectives that
define separation between regions of the heap, which provides an elegant ap-
proach to reasoning about programs with mutable data structures. Verification
environments based on separation logic—such as jStar [4] and VeriFast [7]—can
verify advanced features such as usages of the visitor, observer, and factory de-
sign patterns. On the other hand, writing separation logic annotations requires
considerably more expertise than using standard contracts embedded in the pro-
gramming language; this makes tools based on separation logic more challenging
to use by practitioners.

7 Future Work

AutoProof is a component of EVE, the Eiffel Verification Environment, which
combines different verification tools to exploit their synergies and provide a uni-
form and enhanced usage experience, with the ultimate goal of getting closer to
the idea of “verification as a matter of course”.

Future work will extend AutoProof and improve its integration with other
verification tools in EVE. In particular, the design of a translation supporting
the expressive model-based contracts [17] is currently underway. Other aspects
for improvements are a better inference mechanism for frame conditions and
intermediate assertions (e.g., loop invariants [6]); a support for interactive prover
as an alternative to Boogie for the harder proofs; and a combination of AutoProof
with the separation logic prover also part of EVE [19].

References

1. A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In In European Conference on Object Oriented Program-
ming, ECOOP. Springer-Verlag, 2008.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer, 2004.

3. A. Darvas and K. R. M. Leino. Practical reasoning about invocations and imple-
mentations of pure methods. In FASE, LNCS. Springer-Verlag, 2007.

4. D. Distefano and M. J. Parkinson. jStar: Towards Practical Verification for Java.
In Proceedings of OOPSLA, pages 213–226, 2008.

5. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234–245. ACM, 2002.

6. C. A. Furia and B. Meyer. Inferring loop invariants using postconditions. In Fields
of Logic and Computation, volume 6300 of Lecture Notes in Computer Science,
pages 277–300. Springer, 2010.

7. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In Proceedings of APLAS 2010, 2010.

8. K. R. M. Leino. This is Boogie 2. Technical report, Microsoft Research, 2008.
9. K. R. M. Leino. Dafny: an automatic program verifier for functional correctness.

In Proceedings of the 16th international conference on Logic for programming, arti-
ficial intelligence, and reasoning, LPAR-16, pages 348–370. Springer-Verlag, 2010.

12

10. K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In ESOP,
volume 4960 of LNCS, pages 307–321. Springer-Verlag, 2008.

11. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs.
In Proceedings of the 18th European Symposium on Programming Languages and
Systems, ESOP ’09, pages 378–393. Springer-Verlag, 2009.

12. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

13. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

14. M. Nordio, C. Calcagno, B. Meyer, P. Müller, and J. Tschannen. Reasoning about
Function Objects. In Proceedings of TOOLS-EUROPE, LNCS. Springer, 2010.

15. M. Nordio, C. Calcagno, P. Müller, and B. Meyer. A Sound and Complete Program
Logic for Eiffel. In M. Oriol, editor, TOOLS-EUROPE, 2009.

16. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL ’04, pages 268–280, 2004.

17. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying reusable components. In
Proceedings of VSTTE’10, volume 6217 of Lecture Notes in Computer Science,
pages 127–141. Springer, 2010.

18. J. Tschannen. Automatic verification of Eiffel programs. Master’s thesis, Chair of
Software Engineering, ETH Zurich, 2009.

19. S. van Staden, C. Calcagno, and B. Meyer. Verifying executable object-oriented
specifications with separation logic. In Proceedings of ECOOP’10, volume 6183 of
Lecture Notes in Computer Science, pages 151–174. Springer, 2010.

13

	Verifying Eiffel Programs with Boogie
	Tschannen, Furia, Nordio, Meyer
	Usable Verification Tools
	Exceptions
	How Eiffel Exceptions Work
	Specifying Exceptions
	Eiffel Exceptions in Boogie
	An Example of Exception Handling in Boogie

	Inheritance and Polymorphism
	Polymorphism in Boogie
	An Example of Polymorphism with Postconditions

	Other Features
	Default Frame Conditions
	Routines Used in Contracts Pure by Default
	Agents

	Case Study
	Related Work
	Future Work

