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Abstract. With formal techniques becoming more and more powerful, the next
big challenge is making software verification practical and usable. The Eve ver-
ification environment contributes to this goal by seamlessly integrating a static
prover and an automatic testing tool into a development environment. The paper
discusses the general principles behind the integration of heterogeneous verifi-
cation tools; the peculiar challenges involved in combining static proofs and dy-
namic testing techniques; and how the combination, implemented in Eve through
a blackboard architecture, can improve the user experience with little overhead
over usual development practices. Eve is freely available for download.

1 Verification as a Matter of Course

Even long-standing skeptics must acknowledge the substantial progress of formal meth-
ods in the last decades. Established verification techniques, such as those based on ax-
iomatic semantics or abstract interpretation, have matured from the status of merely
interesting scientific ideas to being applicable in practice to realistic programs and
systems. Novel approaches have extended their domain of applicability beyond their
original scope, providing new angles from which to attack the hardest verification chal-
lenges; for example, model checking techniques, initially confined to digital hardware
verification, are now applied to software or real-time systems. Other techniques, such
as testing, have long been part of the standard development process, but only recently
have they become first-class citizens of the verification realm, evolving in the case of
random-based testing into rigorous, formal, and automatable approaches. Verification
requires accurate specifications, and progress in this area has been no less conspicuous,
with the development of understandable notations, such as those based on Design by
Contract, which integrate seamlessly with the programming language and are amenable
to static as well as dynamic analysis techniques. Finally, tool support has tremendously
improved in terms of both reliability and performance, as a result of cutting-edge en-
gineering of every component in the verification tool-chain as well as the increased
availability of computing power.

With the consolidation of these outstanding achievements [14], the new frontier is to
make verification really usable by practitioners [28]: the quest for high reliability to be-
come a standard part of the software development process—“verification as a matter of
course”. The present paper is a step towards this ambitious goal with two contributions,
one general and one specific.



2 Tschannen et al.

The general contribution is a development environment that seamlessly integrates
formal verification with the standard tools offered by programming environments for
object-oriented development (editor, compiler, debugger, . . . ). The integrated environ-
ment is called Eve, built on top of EiffelStudio—the main IDE for Eiffel developers.
Section 6 describes the engineering of Eve, showing how it takes into account sev-
eral of the heterogeneous concerns originating from the goal of improving the usability
of formal verification, such as user interaction and management of computational re-
sources.

The implementation of Eve, freely available for download [11], continues to evolve
as a result of ongoing efforts to integrate more verification techniques and new veri-
fication tools. The currently available implementation, illustrated through an example
session in Section 2, focuses on the integration of two well-known techniques: static
verification based on Hoare-style proofs, currently implemented in Eve through the
AutoProof tool [27,20], and dynamic analysis based on random testing, implemented
through AutoTest [19]. Section 4 describes these tools. After a review of the state of
the art in Section 3, Sections 5 and 7 illustrate the specific contribution of the paper
by discussing the challenges of integrating two very different verification techniques,
tests and proofs, and how Eve combines them to improve each one’s effectiveness and
usability. Section 9 concludes with an analysis of limitations and our current work to
overcome them.

2 An Example Session with Eve

Consider the perspective of a user—henceforth called Adam—who is using Eve to de-
velop a collection of data structure implementations. Table 1 shows portions of Adam’s
code; the code shown is simplified for presentation purposes, but it reflects real features
found in versions of EiffelBase, a standard library used in most Eiffel programs.

The ancestor class COLLECTION models generic containers with a well-defined in-
terface including, in addition to other features not shown, routines (methods) extend that
adds its argument to the collection and is equal which tests for object equality. extend
is annotated with a precondition (require) and postcondition (ensure) which refer to
other features of the class (such as has) not shown. extend is deferred (abstract) as it
lacks an implementation; is equal’s body, instead, calls a pre-compiled implementation
written in C through the external keyword. This encapsulation mechanism prevents
correctness proofs of the routine’s implementation (whose source is not accessible); in
addition, COLLECTION cannot be instantiated and tested because it includes deferred
routines. This seems an unfortunate situation for verification, but verification with Eve
becomes effective in the two descendants of COLLECTION shown in Table 1: ARRAY
and ARRAYED LIST.

Class ARRAY redefines the attribute extendible to False because an array is a con-
tainer of statically-defined size and cannot accommodate new elements ad lib. Corre-
spondingly, the precondition of the inherited feature extend becomes unsatisfiable in
ARRAY. This way of “deactivating” a routine is inconvenient for automatic testing tools
such as AutoTest, which tries, in a vain effort, to generate instances of ARRAY where the
precondition of extend holds in order to test it. AutoProof, the static proof component of
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1 deferred class COLLECTION [G]
2 · · ·
3
4 extendible: BOOLEAN
5
6 extend (v: G)
7 −− Ensure that structure contains ‘v’.
8 require
9 extendible

10 v 6=Void
11 deferred
12 ensure has (v) end
13
14 has (v: G): BOOLEAN
15 −− Does structure contain ‘v’?
16 deferred
17 end
18
19 is equal (other: COLLECTION [G]): BOOLEAN
20 −− Is ‘other’ attached to an object equal to ‘Current’?
21 require other 6=Void
22 external built in
23 ensure Result = other.is equal (Current) end
24
25 end−− CONTAINER
26
27 class ARRAY [G]
28 inherit COLLECTION [G]
29 redefine extendible end
30
31 extendible: BOOLEAN = False
32
33 · · ·
34 end−− ARRAY

35 class ARRAYED LIST [G]
36 inherit ARRAY [G]
37 redefine extendible end
38
39 extendible: BOOLEAN = True
40
41 extend (v: G) do . . . end
42
43 make default (n: INTEGER)
44 −− Allocate list with ‘n’ slots items
45 −− and fill it with default values.
46 require n≥ 0
47 local l v: G
48 do
49 Precursor (n)
50 across [1..n] as i loop extend (l v) end
51 end
52
53 remove left cursor (c: CURSOR)
54 −− Remove item to left of ‘c’ position.
55 require
56 not is empty
57 c 6=Void and valid (c)
58 not c.before and not c.is first
59 do
60 remove (c.index− 1)
61 ensure
62 count = old count− 1
63 c.index = old c.index− 1
64 end
65 end−− ARRAYED LIST

Table 1. Classes CONTAINER, ARRAY, and ARRAYED LIST.

Eve, comes to the rescue in this case: it easily figures out that the precondition of extend
is unsatisfiable in ARRAY (line 10 in Table 1), and hence that extend is trivially correct
and requires no further analysis. Adam checks that ARRAY.extend receives a green light
and requires no further attention (Figure 1).

Class ARRAYED LIST switches extendible to True and provides a working imple-
mentation of extend available to clients. When Eve tries to test the class, it quickly
discovers a fault in the creation procedure (constructor) make default: after the instruc-
tion Precursor (n) calls the creation procedure in the ancestor of ARRAY, the loop
(across...loop...end) tries to call extend with the local l v as argument; this violates
extend’s precondition clause v 6=Void because l v is not initialized and hence equals the
default value Void (null in Java or C). Adam sees there is something wrong in Eve’s
report (Figure 1); he expands the description of the error and understands how to fix the
bug by adding an instruction create l v before the loop on line 47.

While Adam is busy fixing the error, testing cannot proceed on the same class. Even
if the creation procedure were correct, routine remove left cursor would remain ardu-
ous for automated testing techniques because its precondition is relatively complex; a
random-based approach to the generation of test cases requires specialized techniques
and a long running time to select objects satisfying the clauses in lines 53–55 [30].
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Fig. 1. Example report of Eve, showing scores of classes and routines. The third column
displays the lowest negative score among the routines of each class.

Eve circumvents these limitations by running a static proof, which analyzes individual
routines and does not need a correct creation procedure. The proof succeeds in estab-
lishing that the invocation of remove (line 57) is correct and ensures the postcondition
of remove left cursor: the routine is correct and no testing is needed (Figure 1).

Later, as soon as the constructor of ARRAYED LIST is fixed, Eve continues its work
and exhaustively tests the implementation of is equal finding no postcondition viola-
tions. This is not as good as a correctness proof, but it comforts Adam’s confidence in
the reliability of is equal, and it is the best result possible for a routine whose imple-
mentation can be analyzed only as black-box.

Although it only uses some of Eve’s features, this scenario illustrates how Eve can
help develop correct applications with little overhead over standard practices:

– Eve is completely automatic and integrated in a full-fledged IDE.
– It supports verification of functional correctness specifications embedded as con-

tracts (pre and postconditions, class invariants, intermediate assertions).
– It transparently manages different verification engines to complement their strengths,

supports the full programming language Eiffel, and provides fast feedback to users.
– It only displays such feedback when needed, to encourage focus on the most egre-

gious errors, and to increase the users’ confidence in the correctness of an imple-
mentation based on the available evidence.

3 Related Work

The following sections explains the Eve machinery that makes usage scenarios such as
the above possible. To set these solutions in context, we first examine briefly a few state-
of-the-art tools for static and dynamic verification (proofs and tests), with a summary of
their distinctive features and a summary of the relatively few approaches that combine
both techniques. A broader review of formal techniques is available elsewhere [14,28].

Static verification. Projects such as ESC/Java [12] and Spec# [2] have made Hoare-
style correctness proofs more practical and automatic, at least for simple programs. The
Spec# language extends C# with preconditions, postconditions, object invariants, and
non-null types; the Spec# environment verifies Spec# programs by translating them
into Boogie, also developed within the Spec# project. The success of this approach has
shown the importance of using an intermediate language for verification. Spec# works
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on interesting examples; however, it is still not applicable to every feature of C# (for ex-
ample, exceptions and function objects). A design choice that distinguishes Spec# from
AutoProof for Eiffel is the approach to deal with some delicate issues, namely the fram-
ing problem and managing class invariants. Spec# introduces specialized annotations,
which make proofs easier but at the price of a significant additional annotational burden
for developers. AutoProof, on the contrary, does not introduce ad hoc annotations and
correspondingly may fail to verify programs where Spec# is successful. Some of these
limitations are mitigated in Eve by supplementing AutoProof with testing.

Separation logic is an extension of Hoare logic designed to handle frame properties;
verification environments based on separation logic (e.g., jStar [8] for Java and Very-
Fast [16] for C and Java) can verify sophisticated features such as usages of the visitor,
observer, and factory patterns. Writing separation logic annotations requires consider-
ably more expertise than using contracts embedded in the programming language; this
makes separation-logic tools more challenging to use by practitioners.

Other static verification techniques, such as software model-checking [3] and ab-
stract interpretation [6], approximate the semantics of programming languages to make
their analysis scalable and to require little annotations. These techniques are currently
unsupported in Eve, but they may become as part of future work.

Dynamic verification. Only recently have dynamic techniques, such as testing, be-
come applicable fully automatically to large programs (e.g., [13,17,4]). In this line of
work, DART [13] introduced the concept of dynamic symbolic execution, a combina-
tion of dynamic verification with lightweight static techniques. CUTE [23] and EXE [4]
follow similar approaches but they are applicable to more complex features (such as
pointers and complex data structures) and scale massively. The main high-level differ-
ence of AutoTest is that it relies on contracts to verify functional properties; the afore-
mentioned testing tools, instead, work on languages without contracts and therefore are
limited in the kinds of errors that they can detect.

In recent years, dynamic techniques have extended their domain of applicability to
problems such as contract inference [9,30] and specification mining [1,7] which have
traditionally been approachable only by static means. Future versions of Eve will in-
tegrate dynamic contract inference as implemented in our AutoInfer tool (sketched in
Section 6).

Combined static/dynamic verification. Recently, a few authoritative researchers
have pointed out the potential of combining static and dynamic techniques [22,10,24]
to make verification more usable; the present paper concurs in this vision.

Some of the aforementioned testing tools [13,23,4] already leverage lightweight
static analyses to boost the performance of automated testing. Pex [25] is another scal-
able automatic testing framework, which relies more heavily on static methods: it ex-
ploits a variant of dynamic symbolic execution where an automated theorem prover
(Z3) analyzes the symbolic executions to improve code coverage. Pex uses parameter-
ized unit tests [26] as specifications. This makes it possible to test fairly sophisticated
properties, but it also requires users to produce specifications in this customized form;
contract specifications, however, seem more palatable to practitioners [5].

DASH [22] combines static and dynamic verification with an approach extending
the software model-checking paradigm [3]: DASH’s algorithm to generate exhaustive
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tests maintains a sound abstraction of the program, which can be used to construct
automatically a correctness argument.

The few recent attempts at combining static and dynamic techniques tend to be spe-
cific conservative extensions of basic methods; the approach described in the present
paper tries integration at a higher level to avail the complementarity of static and dy-
namic techniques to a larger extent.

4 The Tools of Eve

The integrated verification techniques currently available in Eve and illustrated in the
preceding example session rely on two fundamental tools: AutoProof and AutoTest,
which are now presented.

AutoTest. AutoTest [19]—now a standard component of commercial EiffelStudio—
is a fully automatic contract-based testing tool. AutoTest generates objects by random
calls to creation procedures. Preconditions select valid inputs and postconditions serve
as oracles: every test case consists of the execution of a routine on objects satisfying
its precondition; if executing the routine violate its postcondition or calls another rou-
tine without satisfying its precondition, the routine tested has a fault. A failing test case
provides a concrete error report which is useful for debugging.

Like any dynamic technique based on execution, AutoTest handles every feature of
the source language (Eiffel). Among its limitations, instead, is that random testing can
take several hours to find the most subtle faults, and that complex specifications can
exacerbate this problem.

AutoProof. AutoProof [20]—a more recent member of the Eiffel tool-set—is an
automatic verification tool that translates Eiffel programs (with contracts) into anno-
tated Boogie programs. AutoProof then uses the Boogie verifier [2] to check whether
the Eiffel implementation satisfies its specification.

AutoProof improves on similar environments for static verification (e.g., Spec# [2])
by supporting some advanced language constructs such as function objects (agents in
Eiffel terminology). Nonetheless, some features of Eiffel—most notably exceptions and
floating point arithmetic—are still unsupported and routines using them are not ade-
quately translated to Boogie. The performance of AutoProof depends on the quality of
contracts available; accurate contracts improve the modularity of the analysis which can
then also verify partial implementations.

5 The Advantages of Being Static and Dynamic

From a user’s perspective, Eve’s integration of static and dynamic tools can make veri-
fication more effective and agile in a variety of scenarios.

– Static verification is more modular and scales better to large systems made of sev-
eral classes. It can also verify routines of deferred (abstract) classes which cannot
be tested because they cannot be instantiated. This indirectly improves the perfor-
mance of testing as well, because the testing effort can focus on routines or classes
not proved correct.
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Conversely, whenever testing uncovers a faulty routine, the static tool stops trying
to verify that routine. This policy may be broken down to individual clauses: for
example, if testing finds a run of remove left cursor (Table 1) violating the post-
condition clause count = old count − 1, it may still be worthwhile to try to prove
the other clause, c.index = old c.index + 1.

– Dynamic analysis provides concrete reports of errors, which make debugging eas-
ier. For example, the following trace documents the error in the creation procedure
make default of Table 1:

create {ARRAYED LIST} l.make default (1)
−− Inside make default:
l v := Void ; Precursor (1) ; extend (l v) −− l v is Void

– Classes that have a faulty creation procedure or are deferred cannot be instantiated;
testing cannot proceed in this case unless the constructor is fixed or an implemen-
tation of every routine is available. Static techniques do not incur these limitations:
as illustrated in the example of Section 2, they can verify individual implemented
routines even if others in the same class are deferred.

– Many core libraries rely on routines implemented through calls to low-level exter-
nal routines (typically, in the Eiffel case, C functions); an example was is equal
in Table 1. Such routines are inaccessible to static analysis but are still testable.
The integrated results of static and dynamic analysis on classes with such external
routines reinforce the confidence in the correctness of the overall system.

– The combination of static and dynamic analysis can help detect discrepancies be-
tween the runtime behavior of a program and its idealized model. Examples are
overflows and out-of-memory errors, which are often not accounted for in an ab-
stract specification assuming perfect arithmetic and infinite memory. Consider, for
example, a routine that updates the balance of a bank account as a result of a deposit
operation:

deposit (amount: INTEGER)
require amount > 0
do balance := balance + amount
ensure balance > old balance

end

balance: INTEGER

AutoProof, which models the type INTEGER as mathematical integers, verifies
that the routine is correct. AutoTest, however, still finds a bug which occurs when
old balance + amount is greater than the largest integer value representable and
balance overflows. It is then a matter of general policy whether one should change
the postcondition or the implementation. In any case, the comparison of the results
of static and dynamic analysis clearly highlights the problem and facilitates the de-
sign of the best solution. With default settings, Eve gives a null correctness score
(Section 7) in such situations, which reflects the uncertainty and the need for further
analysis.

– Complex contracts considerably slow down automatic testing, both because their
runtime evaluation incurs a significant overhead and because random generation
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takes a long time to build objects that satisfy complex preconditions. Contracts
may even in some cases be non-executable because they involve predicates over
infinite sets; for example, the invariant of a class modeling a hash function requires
that the hash code of every possible object (an infinite set) be a nonnegative inte-
ger. Static techniques can help in all such scenarios: it may be easier to prove the
correctness of a routine if the precondition is complex, and hence also stronger;
complex postconditions boost modular verification.

These observations highlight the usefulness of treating proofs and tests as comple-
mentary and convergent techniques (even though they have often been pursued, in the
past, by separate research sub-communities in software engineering). There is indeed
no contradiction; in particular, with the purpose of tests being entirely defined as at-
tempting to make programs fail [18], a useful (that is, failed) test is a proof that the
program is not correct. The approach illustrated by Eve is then to combine tools that
can prove a program correct (such as AutoProof) and tools that can prove a program
incorrect (AutoTest); as soon as a user has written a new program element, the two will
start in parallel, each with its own specific goal, prove or disprove; in favorable situ-
ations, one of them will reach its goal fast, providing the user with a fast response of
correctness or incorrectness.

6 The Design of an Integrated Verification Environment

The Eve integrated verification environment is built on top of the EiffelStudio IDE and
supplements it with functionalities for verification.

Contracts. The choice of Eiffel as programming language ensures that we rely
on formal specification elements embedded in the program text as contracts (pre and
postconditions, class invariants, and other annotations). Since correctness is a relative
notion (being dependent on a specification), every verification activity requires some
form of specification. Empirical evidence suggests that formal specifications in the form
of contracts are a good compromise between the rigor required by formal techniques
and the kind of effort that practitioners are able, or willing, to provide [5,21].

Not all contracts must be written by programmers: the architecture of Eve can ac-
commodate components for specification inference (see Section 3) to help users write
better and stronger contracts. This particular property, however, is not emphasized in the
present paper, which focuses on the integration of static and dynamic analysis assuming
some contracts are available.

Automation. A defining characteristic of the verification tools in Eve is that they
are automatic and can do most of the work without any explicit input from the user,
assuming the presence of contracts which Eiffel programmers are already used to pro-
vide [5]. In order to decouple the machinery of the individual verification tools and to
filter out their output, Eve relies on a blackboard architecture [15] shown in Figure 2.

A controller is responsible for triggering the various tools when appropriate, invis-
ibly to the users. The controller bases its decisions on what the user is currently doing,
which resources are available, and the results of previous verification attempts. The lat-
ter are collected in a data pool where every verification tool stores the results of its
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Fig. 2. Eve’s blackboard architecture (shadeless boxes currently not implemented).

runs. Users do not directly read the output of individual tools in the data pool. Instead,
the controller summarizes the output data and displays individual tool results only upon
explicit user request.

A major design decision of Eve was to make the verification mechanisms as un-
obtrusive as possible. Users can continue using the IDE and their preferred software
development process as before; the verification techniques are an additional benefit,
available on demand and compatible with the rest of the IDE’s tools. In the same way
that type checking adds a new level of help on top of the more elementary mechanisms
of syntax error checking, Eve provides reports from proofs and tests on top of the simple
verification techniques provided by type checking.

Interaction with the user. Users only have a coarse-grained, binary form of con-
trol over the verification: enable or disable. Typically, they will enable verification as
soon as some code and a few contracts have been written. Even when enabled, verifica-
tion never interferes with the more traditional development activities: Eve works in the
background on the latest compiled version of the system, and displays a summary of
the verification results through an interface similar to that used to signal syntax or type
errors in standard IDEs (Figure 1). At any time, the user can browse through the result
list, which links back to the parts of the program relevant for each message, and de-
cide to revise parts of the implementation or specification according to the suggestions
provided by Eve.

Every entry in the result list has a score: a quantitative estimate of the correctness or
incorrectness of the associated entry, based on the evidence gathered so far by running
the various tools. The score varies over the real interval [−1, 1] (In the user interface
the scale is, for more readability, −100 to +100, with rounding to the closest integer).
A positive score indicates that the evidence in favor of correctness prevails, whereas
a negative score characterizes evidence against correctness. The absolute value of the
score indicates the level confidence: 1 is conclusive evidence of correctness (for ex-
ample a successful correctness proof), −1 is conclusive evidence of incorrectness (for
example a failing test case), and 0 denotes lack of evidence either way. Figure 1 shows
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an example of report with scores and stripes colored accordingly. Section 7 discusses
how the score is computed for the verification tools currently integrated in Eve.

Modularity and granularity. Object-oriented design emphasizes modularity, from
which verification can also benefit. While the level of granularity achievable by an inte-
grated verification environment ultimately depends on the level of granularity provided
by the tools it integrates, Eve orients verification at the two basic levels of encapsu-
lation provided by the object-oriented model: classes and routines within a class. Eve
associates correctness scores with items at both levels. Additional information may be
attached to a correctness score, such as the line where a contract violation occurs in
a test run, or the abstract domain used in an abstract interpretation analysis. For large
systems, it is also useful to have scores for highest levels of abstraction, such as groups
of classes or entire libraries, but in the present discussion we limit ourselves to routine
and class levels.

The scores from multiple sources of data at the same level are combined with
weighted averages, and define the correctness scores at coarser levels. For example,
every tool t tries to verify a routine r in class C and reports a correctness score sC

r (t) ∈
[−1, 1]. The cumulative score for the routine r is then computed as the normalized
weighted average:

sC
r =

1∑
t∈T wC

r (t)
·
∑
t∈T

wC
r (t)s

C
r (t) (1)

where wC
r (t) ∈ R≥0 denotes the weight of the tool t on routine r. A similar expression

computes the cumulative score sC for a class C from the scores sC
r of its routines and

their weights wC
r :

sC =
1∑

r∈R wC
r
·
∑
r∈R

wC
r sC

r (2)

The weights take various peculiarities into account:

– A tool may not be able to handle certain constructs: its confidence should be scaled
accordingly. For example, a tool unable to handle exceptions appropriately has its
score reduced whenever it analyzes a routine which may raise exceptions.

– The results of a tool may be critical for the correctness of a certain routine. For
example, a quality standard may require that every public routine be tested for at
least one hour without hitting a bug; correspondingly, the weight wC

r (t) for public
routines r would be high for testing tools and low (possibly even zero) for every
other tool.

– The correctness of a routine may be critical for a class; then the routine score should
have a higher weight in determining the class cumulative score.

– More generally, the weight may reflect suitable metrics that estimate the critical-
ity of a routine according to factors such as the complexity of its implementation
or specification, whether it is part of the interface of public, and the number of
references to it in clients or within the containing class.

– Similar metrics are applicable at other levels of granularity, for example to weigh
the criticality of a class within the system.

Eve provides default values for all the weights (Section 7), but users can override them
to take relevant domain knowledge into account.
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Resource usage. The verification layer must not impede more traditional develop-
ment activities. This requires in particular a careful usage of the resources to guarantee
that the responsiveness of the IDE when verification is enabled does not cause a signif-
icant overhead. In Eve, the controller activates the various verification tools only when
there are resources to spare. It also takes into account the peculiarities of the various
tools: those with short running times are usually run first and re-run often, while those
requiring longer sessions are activated later, only if the faster tools did not give conclu-
sive results, and when enough resources are available.

When verification is first activated for a project, all the scores are null, as the system
does not have any evidence to assess correctness or incorrectness. Then, the controller
runs the least demanding tools first, to provide the user with some feedback as soon as
possible. The same approach is applied modularly, whenever some part of the system
changes (and is recompiled). More detailed analysis is postponed to when more time is
available, the system is sufficiently stable, or conclusive evidence is still lacking about
the correctness of some routines or classes.

Extensibility. The architecture of Eve is extensible to include more tools of hetero-
geneous nature. The user interface will stay the same, with the blackboard controller be-
ing responsible for managing the tools optimally and only reporting the results through
the summary scores described above. It is our plan to integrate more verification tools,
currently available only through explicit invocation.

The architecture can also accommodate tools that, while not targeted to verifica-
tion in a strict sense, enhance the user experience. For example, tools for assertion
inference—such as our own AutoInfer [29]—can complement user-provided contracts
and improve the performance of approaches that depend on contracts. The controller
can activate assertion inference when the verification machinery performs poorly and
when metrics suggest that the code is lacking sufficient specifications. The assertion
inference tools themselves may sometimes re-use the results of other tools; for exam-
ple AutoInfer relies on the test cases generated by AutoTest. Finally, Eve can show the
inferred assertions in the form of suggestions, in connection with the results of other
verification activities. For example, it could display an inferred loop invariant with the
report of a failed proof attempt, and suggest that the invariant can make the correctness
proof succeed if added to the specification. The current implementation of Eve does not
integrate such suggestions mechanisms yet, but the architecture is designed with these
extensions in mind.

7 Correctness Scores for Proofs and Testing

Equation 1 on page 10 gives the correctness score for a routine r of class C; now,
consider a set of tools T = {p, t}, where p denotes AutoProof and t denotes AutoTest.

General principles for scores. We noted earlier that an interesting test, that is to
say a failed test, is a proof of incorrectness. This is of course another form of Dijkstra’s
famous observation about testing—but restated as an argument for tests rather than a
criticism of the notion of testing. This observation has two direct consequences on the
principles for computing correctness scores.
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First, it is relatively straightforward to assign scores to the result of a testing tool
when it reports errors: assign a score of −1, denoting certain incorrectness, to every
routine where testing found an error. In certain special circumstances, the score might
be differentiated according to the severity of the fault; for example a bug that occurs
only if the program runs for several hours may be less critical than one that occurs
earlier, if the system is such that it is reset every 45 minutes. In most circumstances,
however, it is better to include such domain information in the specification itself and
to treat every reported fault as a routine error. Then, different routines may still receive a
different weight in the computation of the score of a class (Equation 2 on page 10)—for
example, a higher weight to public routines with many clients.

The second consequence is that it is harder to assign a positive score sensibly to rou-
tines passing tests without errors. It is customary to assume that many successful tests
increase the confidence of correctness; hence, this could determine a positive correct-
ness score, which increases with the number of tests passed, the diversity of input values
selected, or the coverage achieved according to some coverage criteria such as branch
or instruction coverage. In any case, the positive score should be normalized so that it
never exceeds an upper limit strictly less than 1, which denotes certain correctness and
is hence unattainable by testing.

Since static verification tools are typically sound, a successful proof should gener-
ally give a score of 1. Certain aspects of the runtime behavior, such as arithmetic and
memory overflows as discussed above, may still leak in some unsoundness if the static
verifier does not model them explicitly; in such cases the score for a successful proof
may be scaled down in routines with a specification that depends on such aspects.

Which score to assign to a static verifier reporting a failed proof attempt depends
on the technique’s associated guarantee of completeness. For a complete tool, a failed
proof denotes a certain fault, hence a score of−1. If the tool is incomplete, a failed proof
simply means “I don’t know”; whether and how this should affect the score depends on
the details of the technique. For example, partial proofs may still increase the evidence
for correctness and yield a positive score.

Score and weight for AutoTest. If AutoTest reports a fault in a routine r of class
C, the correctness score sC

r (t) becomes −1. This score receives a high weight wC
r (t) =

100 by default; the user can adjust this value to reflect specific knowledge about the
criticality of certain routines over others with respect to testing.

When AutoTest tests a routine r of class C without uncovering any fault, the score
sC

r (t) increases proportionally to the length of the testing session and the number of
test cases executed, but with an upper limit of 0.9. With the default settings, this maxi-
mum is reached after 24 hours of testing and 104 test cases executed without revealing
any error in r. Users can change these parameters; the default settings try to reflect the
specificities of random testing shown in repeated experiments [31]. We decided against
using specific coverage criteria such as branch coverage in the calculation of the rou-
tine score, as the experiments suggest that for example the correlation between branch
coverage and the number of uncovered faults is weak.

Score and weight for AutoProof. AutoProof implements a sound but incomplete
proof technique. The score sC

r (p) for a routine r of class C is set accordingly: a success-
ful proof yields a score of 1; an out-of-memory error or a timeout are inconclusive and
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yield a 0; a failed proof with abstract trace may be a faint indication of incorrectness:
the abstract trace may not correspond to any concrete trace (showing an actual fault),
but it often suggests that a proof might be possible with more accurate assertions. The
score is then −0.2 to reflect this heuristic observation.

The weight wC
r (p) takes into account the few language features that are currently

unsupported (floating point numbers and exceptions, see Section 3): if r’s body contains
such features, wC

r (p) is conservatively set to zero. In all other cases, wC
r (p) is 1 by

default, but the user can adjust this value.
Routine weights. Equation 2 (page 10) combines the scores sC

r of every routine
r of class C with weights wC

r to determine the cumulative score of C. The weights wC
r

should quantify the relevance of routine r for the correctness of class C. This depends in
general on the overall system design, which only developers can express appropriately,
but which often depends on the visibility of a routine.

Eve supports a simple way to enter this piece of information: every routine has an
optional importance flag which takes the values low and high. wC

r is then

wC
r = vC

r · iCr

The visibility of r determines vC
r , which is 2 if r is public and 1 otherwise. The im-

portance of r determines iCr , which is 2 if r has high importance, 1/2 if it has low
importance, and 1 it the developer did not set the importance flag.

8 Usage Scenarios

How serviceable is Eve’s score which combines the results of different verification
tools, as opposed to considering the tools’ outputs individually? This section outlines a
few straightforward scenarios that compare the output given by AutoProof or AutoTest
in isolation against Eve’s combined output; they show the greater confidence supplied
by Eve, and the straightforward interpretability of its output. The example1 models at-
tributes of an individual with a class PERSON. Table 2 lists 5 routines of the class to
be verified; for each routine, the table reports the score and weight of AutoProof and
AutoTest within Eve, and the corresponding combined score.

Routine set age demonstrates a favorable scenario, where each tool can provide
strong positive evidence indicating correctness. The overall score is, correspondingly,
quite high, but it still falls short of the maximum because testing can never prove the
absence of errors with 100% confidence.

Routine increase age includes integer arithmetic, which might produce overflow.
AutoProof can verify the routine, but Eve is aware that the proof scheme models inte-
gers as mathematical integers, hence it weights down the value of the successful proof
because the abstraction may overlook overflow errors. Indeed, AutoTest reveals an over-
flow when executing the routine with the maximum integer value. The combined score
indicates that there is an error, which AutoTest discovered beyond the limitations of
AutoProof. Another routine age difference also uses integer arithmetic but it is correct.

1 The complete source code of the example is available at:
http://se.ethz.ch/people/tschannen/sefm2011_example.zip.

http://se.ethz.ch/people/tschannen/sefm2011_example.zip
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Item Tool Result Weight Score
set age AutoProof Verified successfully 1.0 1.00

AutoTest No errors found 1.0 0.90
Routine score 0.95

increase age AutoProof Verified successfully 0.5 1.00
AutoTest Overflow detected 100.0 -1.00
Routine score -0.99

age difference AutoProof Verified successfully 0.5 1.00
AutoTest No errors found 1.0 0.90
Routine score 0.93

set name AutoProof Proof failed 0.5 -0.10
AutoTest No errors found 1.0 0.90
Routine score 0.57

body mass index AutoProof Inapplicable 0.0 0.00
AutoTest No errors found 1.0 0.90
Routine score 0.90

apply command AutoProof Verified successfully 1.0 1.00
AutoTest Inapplicable 0.0 0.00
Routine score 1.00

PERSON Class score 0.56

Table 2. Individual and combined results for class PERSON.

Eve still scales down AutoProof’s score accordingly; in this case, however, AutoTest
does not find any error, hence the overall score grows high: the uncertainties of the two
tools compensate each other and the cumulative score indicates confidence.

Routine set name relies on the object comparison semantics, which AutoProof over-
approximates. In this case, a failed proof does not necessarily indicate an error in the
routine, hence it only accounts for a mildly negative score. When AutoTest does not find
any error after thorough testing, the combined score becomes visibly positive, while still
leaving a margin of uncertainty given the lack of conclusive evidence either way.

Routines body mass index and apply command demonstrate how Eve’s combina-
tion of tools expands the applicability of verification: body mass index uses floating
point arithmetic, unsupported by AutoProof, whereas apply command uses agents, un-
supported by AutoTest. Eve relies entirely on the only applicable tool in each case.

The overall class score (last line of Table 2) uses a uniform weight for the routines;
the score concisely indicates that considerable effort has been successfully invested in
the class’s verification, but some non-trivial issues are open.

9 Conclusions

Eve improves the usability of the individual verification tools by integrating them into
an environment which features: automation and minimal direct user interaction; mod-
ularity at class and routine level; and extensibility with new tools. The current imple-
mentation of Eve [11] combines a static verifier for Hoare-style proofs and a dynamic
contract-based testing framework. The present paper has shown how these two tech-
niques can be used in combination to improve the overall productiveness of verification.

Limitations and future work. In some situations, the integration of proofs and tests
is still ineffective and provides an unsatisfactory user experience:
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– When testing is the only technique applicable, it may be difficult to provide users
with fast feedback. Automated random testing is very effective at finding delicate
and unexpected bugs, but may require long sessions.

– The analysis of correct routines that use certain sophisticated language features—
beyond those currently supported by AutoProof—may be inconclusive: testing does
not find any error, but this is no substitute for a correctness proof.

– The completeness of contracts strongly affects the performance of verification.
Weak contracts are easier to write and to reason about; strong contracts boost mod-
ular verification and expose subtler defects.

– Eve integrates multiple verification tools to complement their strengths and weak-
nesses. Different tools, however, may introduce discrepant models of the same im-
plementation, such as for the class INTEGER discussed above. As the number of
integrated tools grows, reconciling several contradictory semantics may become a
delicate issue.

Future work will address these limitations to perfect the integration of testing and
proofs; in particular, the following directions deserve further investigation.

– If AutoProof successfully verifies an assertion clause, the runtime checking of that
specific clause can be disabled; this would contribute to speeding up the testing
process. This improvement is currently unsupported because it requires a change in
the Eiffel runtime to enable and disable the checking of individual assertion clauses.

– Integrating contract inference tools, such as our own AutoInfer [29], will assuage
the problem of weak contracts that hold back the full potential of static provers.
Another related synergy between static and dynamic techniques is the static verifi-
cation of dynamically guessed contracts.

– A failed proof attempt usually comes with an abstract counterexample trace, which
is, in general, not directly executable. The abstract trace may, however, provide
enough information to suggest a concrete trace that is executable and show a real
bug, or to conclude that the abstract trace is spurious. A spurious trace can help
refine the proof model and sharpen the proof attempt, in a way similar to what done
in the CEGAR (Counter-Example Guided Abstraction Refinement) paradigm [3].

The integration of more tools into Eve will improve the overall effectiveness of the
various techniques and advance the quest towards the goal of Verification As A Matter
Of Course.
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