
Automatic Verification of
Eiffel Programs

Master Thesis

By: Julian Tschannen
Supervised by: Martin Nordio

Prof. Bertrand Meyer

Student Number: 02-715-498

Abstract

Correctness of software systems can be proven by using static verification
techniques. Static verifiers such as Spec# and ESC/Java have been developed
for object-oriented languages. These verifiers have shown that static verification
can be applied to object-oriented languages such as C# and Java. However,
these verifiers are not easy to use, as they introduce many new concepts that
programmers have to learn. To apply these verifiers to a real project, one has to
modify existing code by adding contracts and annotations such as pure method
marks or ownership information. Eiffel supports Design by Contract. Current
libraries and programs are therefore already annotated with contracts.

The goal of this thesis is to develop an automatic verifier for Eiffel which can
prove existing code without the need of further annotations. The main features
supported by the tool are agents and dynamic invocation. The tool, called
EVE Proofs, translates Eiffel programs to Boogie and runs a fully automatic
theorem prover to check correctness of the code. EVE Proofs is integrated
in EVE, the Eiffel Verification Environment. This integration enables Eiffel
programmers to use it directly from the programming environment. To reason
about framing of routines, one needs modifies clauses. To prove existing Eiffel
code, we implemented an automatic extraction of modifies clauses. Although
the extraction of modifies clauses is limited, it enables us to prove examples
with simple frame conditions.

To show the feasibility of EVE Proofs, we present some examples which can
be successfully verified. The examples include the command pattern to show
the verification of agents and the strategy pattern to show the verification of
dynamic invocation.

Acknowledgments

My gratitude goes to my supervisor Martin Nordio for his continuous sup-
port, interesting discussions, and valuable feedback, to Prof. Bertrand Meyer
for giving me the possibility to work on this interesting topic, and to my family
which supported me during my whole time at ETH.

Contents

1 Introduction 9

2 Verification Methodology 11
2.1 Overview . 11
2.2 Basic Encodings . 12

2.2.1 Routine Specification . 12
2.2.2 Routine Calls . 13

2.3 Dynamic Invocation . 15
2.4 Agents . 17
2.5 Automatic Extraction of Modifies Clauses 21
2.6 Pure Inference . 25

3 Translation to Boogie 27
3.1 Introduction to Boogie . 27
3.2 Naming conventions . 29
3.3 Background Theory . 30

3.3.1 Basic Definitions . 30
3.3.2 Typing . 31
3.3.3 Agent Theory . 33

3.4 Attributes . 34
3.5 Routine Signature . 35

3.5.1 Procedure Definition . 36
3.5.2 Arguments . 36
3.5.3 Pre- and Postconditions 38
3.5.4 Class Invariants . 38
3.5.5 Frame Condition . 39
3.5.6 Creation Routines . 39
3.5.7 Pure Functions . 39

3.6 Routine Implementation . 41
3.6.1 Structure . 41
3.6.2 Object creation . 44
3.6.3 Assignment . 44
3.6.4 Routine calls . 45
3.6.5 Agent Creation . 45
3.6.6 Agent Call . 45
3.6.7 Check Instruction . 46

3.7 Control Structures . 46
3.7.1 Conditional . 46

7

3.7.2 Loop . 47
3.8 Tracing Errors . 48

4 User Interface 51
4.1 Starting a Proof . 52
4.2 Result Display . 52

5 Implementation 57
5.1 Proof Engine . 57
5.2 User Interface . 59

6 Case Studies 61
6.1 Account . 61
6.2 Formatter . 62
6.3 Command Pattern . 65
6.4 Strategy Pattern . 66

7 Conclusions 71
7.1 Conclusions . 71
7.2 Future Work . 72
7.3 Related Work . 74

Chapter 1

Introduction

Software systems are increasing not only in size but also in complexity. Proving
that these systems are correct is challenging. This effort consumes a lot of time
and resources. Only critical software systems which justify the additional effort
are proven these days.

To prove programs, we have to write its specification. The specification
language needs to be simple for programmers to use it. Furthermore, these
specification languages need to be expressive so that a static verifier can prove
the given program. There exist extensions to object-oriented languages to in-
clude the specification as part of the program, such as Spec# [16, 12] and JML
[17, 9]. Since Eiffel [24, 3, 25] uses the Design by Contract method, it has
built-in support to write the specification as part of the program. This has the
advantage that the programmers are already accustomed to the specification
language and that existing libraries and programs are already annotated with
contracts.

To have wide-spread use of static verification, the verification has to be
integrated in the normal process of writing programs. This means that the
static verifier has to become a part of the IDE. This has been done for example
with Spec# as part of VisualStudio [11] and ESC/Java [19] as part of Eclipse
[2].

The goal of this thesis is to develop an automatic verifier for Eiffel which can
prove existing code without the need of further annotations. The tool, called
EVE Proofs, is integrated in EVE [4], the Eiffel Verification Environment. To
verify an Eiffel program, EVE Proofs translates the program to Boogie code
[22]. The Boogie code is checked by a fully automatic theorem prover [14, 1].
The outcome of the verification is then presented in EVE in a well-arranged way.
The user of EVE Proofs does not need any knowledge about static verification
to use the tool.

Besides basic instructions, EVE Proofs handles agents and dynamic invoca-
tion. To reason about framing, we have implemented an automatic extraction
of modifies clauses. The idea is based on separation logic [32] where frame con-
ditions are extracted from the precondition. Our automatic extraction uses the

9

10 Introduction

postcondition to retrieve a list of locations which build up the modifies clause.
This approach allows us to prove existing Eiffel code without extending the
language with modifies clauses. Although the approach is limited, as all loca-
tions which are modified need to be explicitly stated, the automatic extraction
proved to be useful for our examples. To handle agents, we have implemented
the methodology proposed by Nordio et al. [27]. With this method, we are
able to prove the formatter and archiver which are proposed as verification
challenges by Leavens, Leino and Müller [21]. Also, we have proven an imple-
mentation of the command pattern [20] which uses agents. We also extended
the methodology to handle framing for agents. The approach for agents now
takes all aspects of the routine specification — pre-, post-, and frame condition
— into account. For dynamic invocation, we introduced a methodology which
allows the prover to use the dynamic type rather than the static type to eval-
uate the pre- and postcondition. The frame condition is not yet handled by
the method for dynamic invocation. With this methodology, we can prove the
strategy pattern.

The translation of Eiffel is not complete yet. Important concepts are still
missing. These are generics, exception handling, and expanded types. In ad-
dition, some instructions are not yet supported, for example object tests. The
translation of the missing language constructs is part of future work.

Outline. In Chapter 2, we explain the methodology used for the verification.
Chapter 3 describes the translation from Eiffel to Boogie. The user interface of
EVE Proofs is then presented in Chapter 4. In Chapter 5, we give an overview
of the implementation of the proof engine and the integration in EVE. Chapter
6 shows the examples which we use to evaluate our tool. Finally, Chapter 7
concludes the thesis by summarizing the results, listing possible future work,
and showing related work.

Chapter 2

Verification Methodology

In the first two sections of this chapter, we present an overview of the verifi-
cation process and show the basic encodings of routines in Boogie. The later
sections describe the methodology for dynamic invocation, agents, and auto-
matic extraction of modifies clauses. The last section describes an approach we
implemented to infer pure method marks.

2.1 Overview

EVE EVE Proofs Boogie

Byte-code Boogie code

Eiffel errors Boogie errors

Select classes

Display results

Figure 2.1: Proof Process

The proof process in EVE Proofs is very similar to Spec# [16]. Figure 2.1
shows a schema of the general workflow. We start by selecting the classes we
want to prove. EVE Proofs translates these classes to Boogie code by using the
Eiffel byte-code representation. The byte-code is an intermediate representation
generated by the EiffelStudio compiler [5]. As the byte-code is only generated
for classes which have no compilation errors, this guarantees that the classes we
prove contain only valid Eiffel code. Another advantage is that the byte-code
representation is simpler than the original AST representation, as for example
different ways of writing a creation expression are represented by a single byte-
code node. After the translation of the byte-code to Boogie code, EVE Proofs
runs the Boogie verifier [14] on the generated Boogie code file. To interpret

11

12 Methodology - Basic Encodings

the output of the Boogie verifier, the Boogie code is annotated with additional
information to trace the errors reported by Boogie back to the Eiffel program.
After the verifier is finished, the results of the verification are presented in a
separate tool in EVE.

To prove large systems, we need a modular verification. This means that
different parts of the system can be proven individually, and when these parts
are put together, the whole system is still correct. For an object-oriented pro-
gramming language, the proofs are done per routine. Each routine is proven
individually, and if all routines are correct, then the whole system is correct.
This makes the proofs smaller and reduces the work for the verifier. Another
advantage is, that we only have to prove a library once. The clients of the
library can just use it and only have to prove their own code.

Modular verification has an important implication: when we prove an indi-
vidual routine, we assume that all other routines are correct. This allows us to
use the specification of called routines without looking at their implementations.
As we can have dynamic invocation, the actual routine which is called depends
on the dynamic type of the target. The system has therefore to guarantee that
each redefined feature adheres to the specification of its origin. For pre- and
postconditions, this is already enforced in Eiffel by only allowing weakening of
preconditions and strengthening of postconditions.

2.2 Basic Encodings

2.2.1 Routine Specification

The specification of a routine consists of three elements: the precondition, the
postcondition, and the frame condition. Eiffel only allows to write the pre-
and postcondition in the program. The frame condition can be expressed by a
modifies clause, which defines the effect a routine can have on the system. In
Eiffel, this is not directly represented in the code. In Section 2.5 we present an
automatic extraction of modifies clauses. Using this automatic extraction, we
can assume in the encoding that we have a modifies clause.

The precondition has to hold prior to the execution of the routine and it is
the obligation of the caller to ensure this property. The postcondition has to
hold after the execution of the routine body. The routine implementation has to
establish the postcondition. The frame condition defines the effect of a routine
on the global system. This means that the frame condition denotes which values
of the global system may have changed (see Section 2.5 for more information).

Since we are doing modular proofs on the routine level, the routine specifica-
tion is a key element in the verification. In Boogie, the procedure specification
is composed of three elements:

• A list of require statements. These conditions have to hold prior to ex-
ecuting the routine. It is the obligation of the client to make sure these
conditions hold.

Methodology - Dynamic Invocation 13

• A list of ensure statements. These conditions have to hold after the ex-
ecution of the routine. It is the obligation of the routine implementation
to make sure these conditions hold.

• A list of modifies statements. These statements are used to state the effect
of the routine call on global variables.

When we encode an Eiffel routine, we use these statements to model the rou-
tine contract. The precondition of the routine is encoded as a require statement
and the postcondition as an ensure statement. The third aspect of the routine
specification, the frame condition, is also modeled as an ensure statement. We
are not using the modifies statement for this since it is not powerful enough to
model abstract modifies clauses as we need them for example for agent calls (see
Section 2.4).

Concretely, an Eiffel routine r is encoded as:

procedure r

requires preconditionr

ensures postconditionr

ensures frame conditionr

2.2.2 Routine Calls

To encode a call to a routine, we use the procedure call of Boogie. This procedure
call is defined in the following way:

Let p be a procedure with a require statement requirep and ensure statement
ensurep. When p is called, the require statement has to hold. The require
statement is checked by asserting it. When the require statement holds, the
ensure statement is guaranteed to hold after the call. Therefore, after the call
the ensure statement is assumed to hold.

call p

is therefore interpreted by Boogie as

assert requirep

assume ensurep

Note that we model the frame condition as part of the ensure statements and
is therefore also assumed to hold after the procedure call. Given the encoding
of Eiffel routines from the previous section, the call to a routine r is interpreted
by Boogie as

assert preconditionr

assume postconditionr

assume frame conditionr

14 Methodology - Dynamic Invocation

Listing 2.1: Eiffel : Dynamic invocation example

deferred class OPERATOR_STRATEGY

2
execute (a, b: INTEGER)

4 require

a >= 0 and b >= 0

6 deferred

end

8
last_result: INTEGER

10
end

12

14 class ADDITION_STRATEGY inherit OPERATOR_STRATEGY

16 execute (a, b: INTEGER)

require else

18 True

do

20 last_result := a + b

ensure then

22 last_result = a + b

end

24
end

26

28 class CLIENT

30 main

local

32 o: OPERATOR_STRATEGY

do

34 create {ADDITION_STRATEGY}o

o.execute (1, 2)

36 check o.last_result = 3 end

end

38
end

Methodology - Dynamic Invocation 15

2.3 Dynamic Invocation

Eiffel allows redefined routines to change the contract by weakening the pre-
condition and strengthening the postcondition. When a routine is called, the
contract therefore depends on the dynamic type and not just the static type.
To prove a program, it may be necessary to use this information and evaluate
the contract of the dynamic type.

Listing 2.1 shows an example where the problem is to prove the check in-
struction on line 36. This program cannot be proven by Spec# for example,
as it only considers the static type of feature calls. The static contract of the
routine execute does not specify any postcondition, as the target of the routine
has the deferred type OPERATOR_STRATEGY. The dynamic type of the target is
ADDITION_STRATEGY though, which redefines the routine execute and strengthens
the postcondition. We now introduce a methodology which is using the dynamic
type to evaluate the pre- and postcondition of routine calls.

Abstract Predicates. To prove the example from Listing 2.1, we introduce
abstract predicates for the pre- and postcondition of all routines. In particular,
for the routine execute we introduce the abstract predicates

preexecute(h1, o, a, b)
postexecute(h1, h2, o, a, b)

Where the arguments are the heaps h1 and h2, the target object of the call o,
and the arguments a and b. The heap h1 denotes the state before the execution
of the routine and the heap h2 the state after the execution. The postcondition
predicate takes both heaps as an argument to evaluate old expressions. These
abstract predicates are now used for the specification of the routine execute.

procedure execute(o, a, b)
requires preexecute(Heap, o, a, b)
ensures postexecute(old(Heap), Heap, o, a, b)

Where o is the target of the routine call and a and b are the arguments of the
call. The variable Heap denotes the global heap variable. In the postcondition,
we use old(Heap) to access the heap prior to the execution of the routine.

To reason about the abstract predicates, we need to link those predicates to
the actual pre- and postcondition of the routine. As we want to verify dynamic
invocation, the dynamic type of the target object plays an important role in
setting up the connection between the abstract predicates and the concrete
contracts. This connection is done by introducing axioms in the theory.

Postcondition. For the postcondition, the axioms state that the abstract
postcondition predicate implies the concrete postcondition, depending on the

16 Methodology - Dynamic Invocation

dynamic type of the object. For the routine execute the following axioms are
generated:

∀h1, h2, o, a, b : type(o) <: OPERATOR STRATEGY =⇒ (2.1)(
postexecute(h1, h2, o, a, b) =⇒ true

)
∀h1, h2, o, a, b : type(o) <: ADDITION STRATEGY =⇒ (2.2)(
postexecute(h1, h2, o, a, b) =⇒ true ∧ h2[o, last result] = a + b

)
Where <: is the conformance operator and h2[o, last result] is the value of

the attribute last_result of the object o. Axiom 2.1 is for the routine execute of
the parent type. As the routine does not have a postcondition, the postcondition
predicate just implies true. Axiom 2.2 is for the subtype ADDITION_STRATEGY and
expresses that if the type of the target conforms to ADDITION_STRATEGY, then
the postcondition predicate implies the combined postcondition of the redefined
routine.

Precondition. The axioms for the preconditions use the abstract predicate
on the right-hand side of the implication: the axioms state that the concrete pre-
condition implies the precondition predicate, again depending on the dynamic
type of the object. For the routine execute the following axioms are generated:

∀h1, o, a, b : type(o) <: OPERATOR STRATEGY =⇒ (2.3)(
(a > 0 ∧ b > 0) =⇒ preexecute(h1, o, a, b)

)
∀h1, o, a, b : type(o) <: ADDITION STRATEGY =⇒ (2.4)(
((a > 0 ∧ b > 0) ∨ (true)) =⇒ preexecute(h1, o, a, b)

)
The first axiom is again for the parent type. If the target object conforms to

the type OPERATOR_STRATEGY, then the actual precondition of the routine execute

implies the precondition predicate. Axiom 2.4 is for the type ADDITION_STRATEGY.
For this type, the combined precondition is used for the implication. The axiom
expresses that when the type conforms to ADDITION_STRATEGY and the combined
precondition is satisfied, then the precondition predicate holds.

Application. We can now go back to the example of Listing 2.1. Using the
introduced encoding of routine calls from Section 2.2.2 and the abstract predi-
cates, the call on line 35 is interpreted by Boogie as:

assert preexecute(Heap, o, 1, 2)
assume postexecute(old(Heap), Heap, o, 1, 2)

Methodology - Agents 17

To prove the assertion about the precondition predicate, we use the intro-
duced axioms. The type of the object o is ADDITION_STRATEGY, thus type(o)
conforms to both OPERATOR_STRATEGY and ADDITION_STRATEGY. Using axiom 2.3
and the information that the arguments are both greater than zero, we can
deduce that the precondition predicate holds. As the precondition holds, we
can assume that after the call the postcondition predicate holds. To prove the
check instruction on line 36 of the example in Listing 2.1, we have to prove that
the last_result attribute has the value 3. We cannot use axiom 2.1 for this, as
the contract of the static type is not strong enough. As the type of the target
object is ADDITION_STRATEGY though, we can use axiom 2.2. This axiom implies
that the value of last_result has been set to the addition of the two arguments,
which in this case is 3. Therefore we can prove the check instruction.

By introducing this methodology, we are now able to use the pre- and post-
condition of dynamic types for the verification. Also, this methodology is mod-
ular. Although new axioms are generated which express properties about ex-
isting predicates, these axioms do not change the correctness of existing code.
All introduced axioms respect the behavioral subtyping and only weaken pre-
conditions or strengthen postconditions. If an existing class has been proven,
then the introduction of these new axioms does not change the correctness of
the proof.

The frame condition in the context of dynamic invocation is not handled
with the current methodology. The extension of the method to handle frame
conditions is future work (see Section 7.2).

2.4 Agents

Programs using agents pose two challenges to static verification. First, we need
to be able to specify routines that use agents. Second, we need to be able to
verify the call to an agent. To tackle these two problems, we use the methodology
proposed by Nordio et al. [27]. The approach uses abstract predicates which
express the pre- and postcondition of an agent to specify routines which use
an agent. To verify calls to agents, the methodology introduces assumptions to
link these abstract predicates to the concrete contracts of the routine used to
create an agent. The example in Listing 2.2 is used to illustrate the method.

Agent Call Specification. The class CLIENT declares a routine apply_agent

which takes an agent and an integer as argument and calls the agent with the
given integer. For the call to the agent to be valid, the precondition has to be
satisfied with the given integer argument. The problem is, that we cannot know
what the precondition of the agent is, as we do not know which agent is passed
at runtime. To make sure that the call to the agent is valid, the caller of the
routine apply_agent has to make sure the argument is valid for the agent.

In Eiffel, the class PROCEDURE has a query precondition which denotes the
abstract precondition of the agent. We can use this query to specify the precon-
dition of apply_agent (Listing 2.2, line 43). The meaning of this precondition is,
that the caller of apply_agent has to make sure that the precondition of the agent

18 Methodology - Agents

Listing 2.2: Eiffel : Agent example

class ACCOUNT

2
make (a_initial_amount: INTEGER)

4 require

a_initial_amount >= 0

6 do

balance := a_initial_amount

8 ensure

balance = a_initial_amount

10 end

12 balance: INTEGER

14 deposit (amount: INTEGER)

require

16 amount >= 0

do

18 balance := balance + amount

ensure

20 balance = old balance + amount

end

22
end

24

26 class CLIENT

28 main

local

30 a: ACCOUNT

proc: PROCEDURE [ANY , TUPLE [INTEGER]]

32 do

create a.make (0)

34 proc := agent a.deposit

36 apply_agent (proc , 70)

38 check a.balance = 70 end

end

40
apply_agent (proc: PROCEDURE [ANY , TUPLE [INTEGER]], value

)

42 require

proc.precondition ([value])

44 do

proc.call ([value])

46 ensure

proc.postcondition ([value])

48 end

50 end

Methodology - Agents 19

is satisfied. Applying the same principle, we can use the routine postcondition

of the agent to specify the postcondition of the routine apply_agent.

To use these queries in the code which calls the agent, the routine call of
the agent has to use these queries as well. Therefore, the routine call needs the
following signature:

Listing 2.3: Eiffel : Signature of call

call (value: TUPLE [INTEGER])

require

precondition (value)

ensure

postcondition (value)

To reason about the specification, the methodology replaces these queries
with abstract predicates which model the pre- and postcondition of the agent.
These abstract predicates take the agent, the arguments and the heap as an
argument and yield the evaluation of the concrete contract. The definition of
the predicates is as follows:

precondition(a, h1, arg)
postcondition(a, h1, h2, arg)

Where a stands for the agent object, h1 the heap in the prestate of the call,
h2 the heap in the poststate of the call, and arg the argument to the agent.
The postcondition predicate needs both heaps to evaluate old expressions.

With these predicates, we can now prove the routine apply_agent. The pre-
condition of the routine (Listing 2.2, line 43) is translated to the abstract pre-
condition predicate precondition(proc,Heap, value), where Heap denotes the
current heap. To verify the call to the agent, we have to establish the pre-
condition of call. This precondition is translated to the abstract precondition
predicate as well, specifically to precondition(Current, Heap, value). As the
target to the call is proc and the remaining arguments are the same, both predi-
cates are equal. Therefore the precondition of call is satisfied. Conversely, after
the call to call, the predicate postcondition(Current, old(Heap), Heap, value)
denoting the postcondition of the routine call holds. Using this predicate, the
verifier can prove that the postcondition of apply_agent on line 47 in Listing 2.2
holds.

Agent Creation. We have specified the routine apply_agent using abstract
predicates for pre- and postconditions. In the routine main of Listing 2.2, we
call apply_agent with an agent created from the routine deposit. To use the
specification of apply_agent, we need to link the abstract predicates used in the
specification to the concrete contracts from the routine deposit. We do this by
introducing assumptions when the agent proc is created on line 34:

20 Methodology - Agents

assume ∀h1, arg : precondition(proc, h1, arg) = predeposit(h1, arg)
assume ∀h1, h2, arg : postcondition(proc, h1, h2, arg) = postdeposit(h1, h2, arg)

Where predeposit denotes the concrete precondition of deposit and postdeposit

denotes the concrete postcondition of deposit. These assumptions are now used
to prove the check instruction on line 38. The precondition of the apply_agent

routine uses the abstract precondition predicate. With the first assumption that
is generated, we know that this abstract predicate denotes the precondition of
deposit, which we see is satisfied. Therefore, as the precondition is established,
we can assume the postcondition holds. The postcondition of apply_agent uses
the abstract postcondition predicate. The second assumption implies that this
postcondition predicate is equivalent to the postcondition of deposit. We can
now use the postcondition of deposit to prove the check instruction.

Modifies Clauses. To define the effect of an agent, we have to reason about
the frame condition of the agent. For this we introduce again an abstract pred-
icate:

modifies(a, h1, arg, o, f)

The predicate takes the agent a, the heap h1 denoting the prestate, the
arguments, and additionally an object o and field f . The predicate yields true
if the agent a modifies the field f of the object o when the agent is called with
the given argument. This predicate is used to encode the frame condition of
the call to the agent. The specification of the call routine of the agent is the
following:

procedure call(a, arg)
requires precondition(a, Heap, arg)
ensures postcondition(a, Heap, old(Heap), arg)
ensures ∀o, f : not modifies(a, Heap, arg, o, f)

=⇒ Heap[o, f] = old(Heap)[o, f]

The last line encodes the frame condition. The frame condition expresses,
that all fields on the heap which are not modified by the agent are unchanged.
To use the abstract predicate, we add an additional assumption when an agent
is created which links the abstract modifies predicate to the concrete modifies
clause of the routine. For the agent creation on line 34 in Listing 2.2, we create:

assume ∀h1, arg, o, f : modifies(a, h1, arg, o, f) = modifiesdeposit(h1, arg, o, f)

Where modifiesdeposit expresses if the routine deposit modifies the field f
of the object o. Using this assumption and the encoding of the call routine, we
can reason about the framing of agents.

Methodology - Automatic Extraction of Modifies Clauses 21

2.5 Automatic Extraction of Modifies Clauses

The frame condition plays an important role in modular verification. The frame
condition denotes the effect of a routine on the system. This means that the
frame condition expresses which part of the heap is potentially modified by the
call of a routine. When a routine is called, the verifier is invalidating all knowl-
edge about the locations which may have changed. Therefore it is essential to
constrain the effect a routine has on the system to preserve as much information
as possible.

Spec# [16] and JML [17] have introduced modifies clauses to specify the
frame condition. The programmer can list the attributes in the modifies clause
which are possibly changed by the routine. Eiffel does not offer a way to specify
the frame condition. Therefore, the verifier has to assume that the routine
may have changed everything. With this approach, the possibility for static
verification is very limited as all information is lost after every routine call.

The example in Listing 2.4 illustrates this problem. We have to prove the
check instruction on line 31. Using set_hour, the attribute hour is set to 17.
Nevertheless, the check instruction only holds if the routine set_minute does
not modify the attribute hour. The postcondition of set_minute only defines
what happens to the attribute minute. Since we do not have a modifies clause
to express the frame condition, the verifier has to assume that the value of hour
changed. Therefore, the verifier cannot prove the check instruction.

Automatic Extraction. To remedy this situation, we have introduced an
automatic extraction of modifies clauses. Our approach uses the postcondition
to extract a list of locations which constitute the modifies clause. The post-
condition lists the conditions which the routine established. The idea is, that
these conditions also mention the locations which are needed to express the
postcondition. We then take all the locations which are used in these expres-
sions and construct the modifies clause with these locations. The advantage of
this method is, that the language does not have to be extended and that the
method can be used with existing code.

We use the person class from Listing 2.5 to illustrate the automatic extrac-
tion of modifies clause. To extract the modifies clause from routine marry, we
look at the postcondition. We need to take all locations from this postcondition.
On the first line — spouse = a_other — there are the two locations spouse and
a_other. We can ignore the argument, as arguments are local to the routine
and cannot be changed. The attribute spouse on the other hand is added to the
list of locations. The second postcondition is a_other.spouse = Current. This
postcondition has three locations: a_other, a_other.spouse, and Current. The
argument a_other and the reference to Current can both be ignored as they are
again local to the routine. From the second postcondition we thus extract the
location a_other.spouse. The extracted modifies clause of the routine marry is
formed by the locations spouse and a_other.spouse.

With this method, we can look again at the example from Listing 2.4. To
prove the check instruction, we need to know if the routine set_minute changes
the attribute hour. When we apply the automatic modifies clause extraction

22 Methodology - Automatic Extraction of Modifies Clauses

Listing 2.4: Eiffel : Frame example

class TIME

2
hour , minute: INTEGER

4
set_hour (a_value: INTEGER)

6 do

hour := a_value

8 ensure

hour = a_value

10 end

12 set_minute (a_value: INTEGER)

do

14 minute := a_value

ensure

16 minute = a_value

end

18
end

20

22 class CLIENT

24 main

local

26 t: TIME

do

28 create t

t.set_hour (17)

30 t.set_minute (40)

check t.hour = 17 end

32 end

34 end

Listing 2.5: Eiffel : Person class

class PERSON

2
spouse: PERSON

4
marry (a_other: PERSON)

6 do

−− Implementat ion omitted
8 ensure

spouse = a_other

10 a_other.spouse = Current

end

12
end

Methodology - Automatic Extraction of Modifies Clauses 23

Listing 2.6: Eiffel : Frame inheritance

class PARENT

2
a, b: INTEGER

4
foo

6 do

−− Implementat ion omitted
8 ensure

a > 0

10 end

12 end

14
class CHILD inherit PARENT

16
c: INTEGER

18
foo

20 do

−− Implementat ion omitted
22 ensure then

c > b

24 end

26 end

to the routine set_minute, we see that the modifies clause of set_minute con-
tains only the attribute minute. Therefore, the verifier can deduce that the
call to set_minute does not change the attribute hour and can prove the check
instruction.

Inheritance. In the context of inheritance, the automatic generation has to
maintain behavioral subtyping. This means for frame conditions, that a feature
in the child is not allowed to change locations from the parent which were not
mentioned as being modified by the parent routine. Thus, the list of modified
locations can only be extended with attributes introduced by the child class.

This is illustrated with the example from Listing 2.6. In the parent class,
the extracted modifies clause of foo consists only of the attribute a. The class
CHILD redefines this routine and adds an additional postcondition. Although the
additional postcondition lists the two attributes b and c, only the attribute c

introduced in the child class is added to the modifies clause. If we would allow
the class CHILD to modify b in the redefined routine, than the routine would
violate the frame condition of the parent, thus violating behavioral subtyping.

24 Methodology - Automatic Extraction of Modifies Clauses

Listing 2.7: Eiffel : Overapproximation

class TIME

2
hour , minute: INTEGER

4
copy_time (a_other: TIME)

6 do

hour := a_other.hour

8 minute := a_other.minute

ensure

10 hour = a_other.hour

minute = a_other.minute

12
a_other.hour = old a_other.hour

14 a_other.minute = old a_other.minute

end

16
end

Overapproximation. A drawback of the automatic extraction of modifies
clauses is overapproximation. Each location in the postcondition is used for the
modifies clause, even if the programmer does not want to change the location.
If this situation occurs, one has to add an additional postcondition to state that
a value does not change. An example for this is shown in Listing 2.7. The
copy_time routine does not change any fields of the argument. Nevertheless,
the automatic modifies clause extraction adds the location a_other.hour and
a_other.minute to the extracted modifies clause. To assure that these locations
were not changed, the two postcondition on line 13 and 14 have to be added.

Encoding. In the translation to Boogie, we are adding the frame condition
as part of the postcondition for each routine. Basically, this postcondition ex-
presses that locations on the heap which are not modified by the routine retain
their value after the execution of the routine. The formalization is defined as
follows:

Let r be a routine, modifies(r) the set of locations modified by r, Heap
the set of all locations on the heap, value(l) the value of the location l after
executing r and old(value(l)) the value of the location l before executing r.
Then the frame condition is expressed by:

∀l ∈ Heap : l /∈ modifies(r) =⇒ value(l) = old(value(l)) (2.5)

The formula expresses that all locations not modified by the routine keep
their old value. There is a special case if the set of modified locations of a
routine is empty. This is the case for side-effect free routines, and this simplifies
the formula to:

∀l ∈ Heap : value(l) = old(value(l))

The formula 2.5 is used in the translation to Boogie in Section 3.5.5.

Methodology - Pure Inference 25

Limitations. The automatic extraction has two limitation: one cannot spec-
ify whole object structures which changed and dynamic invocation is not han-
dled. A routine to sort an array would need a modifies clause which lists all
locations of the array. In Spec#, this can be done using a special notation [16].
Extending the automatic extraction to handle object structures and dynamic
invocation is future work (see Section 7.2).

2.6 Pure Inference

Pure (or side-effect free) routines play a special role in the specification. The
execution of the contract of a class must not have any side effects, and therefore
only side-effect free routines are allowed as part of the specification. Eiffel does
not support pure routines as for example Spec# [16], and therefore this rule is
not enforced by the compiler. The verifier is thus trying to infer which routines
are side-effect free from the available information. When we know which routines
are pure, we can introduce a functional representation for them. The functional
form of the routine is necessary to translate the routine specification, i.e. pre-
and postcondition and the class invariant to Boogie. The inference mechanism
for pure marks allows us to prove existing code which has not been annotated
with pure marks.

The automatic inference uses the fact that only pure features are allowed
in contracts: All features which are used in a contract are assumed to be side-
effect free. Thus, if a feature is used in a precondition, postcondition or class
invariant, it is implicitly marked as pure. If a marked routine is being proven,
then the prover checks if the routine is side-effect free. As we are doing modular
verification, we are not proving routines which are merely referenced by checked
code, even if we add a pure mark to a referenced routine.

The problem of this approach is that it is not modular. A feature is only
marked as side-effect free when it is used as part of a contract. This does not
have to be in the same class or even the same library. During the proof of a
class one of its features may not be marked as pure, but together with another
system it may be.

The example in Listing 2.8 illustrates the problem. When we prove a class
in a modular approach, we assume that all used features from other classes
are correct. Therefore, when only class B is verified, class A is assumed to be
correct. As the feature foo of class A is used in a contract of B, it is marked
as side-effect free. Looking at the feature it is clear that it does have side-
effects, thus violating the inferred property. The violation will only be noticed
when both classes are proven together. Only then will the verifier check if the
implicitly marked pure feature is really side-effect free.

26 Methodology - Pure Inference

Listing 2.8: Eiffel : Pure Marking Problem

class A

2
feature

4
foo: BOOLEAN

6 do

i := i + 1

8 Result := i > 10

end

10
i: INTEGER

12
end

14

16 class B

18 feature

20 test (a: A)

require

22 a.foo

do

24 end

26 end

Chapter 3

Translation to Boogie

This chapter describes the translation of Eiffel to Boogie. We first give an
introduction to Boogie, show the naming convention used and explain the back-
ground theory. The rest of the chapter explains how Eiffel code is translated by
showing examples of the translation.

3.1 Introduction to Boogie

This section presents an overview of Boogie. For more details, see [22].

Identifiers. Boogie allows the special characters . (dot), # (hash sign) and $
(dollar sign) in identifier names (among others). Names are case sensitive. The
namespace for functions, procedures, and constants is global. Arguments, local
variables, and bound variables in forall statements are locally scoped.

Types. There are two built-in types: booleans (bool) and integers (int) with
the usual operators. Additional types can be defined by the user. For example,
we can define a type car as follows:

Listing 3.1: Boogie: Type Example

type car;

Functions. Function declarations define mathematical functions. The prop-
erties of these functions have to be expressed by axioms. The following code
segments defines a function which denotes the maximum speed of a car:

Listing 3.2: Boogie: Function Example

function max_speed(car) returns (int);

27

28 Translation to Boogie - Naming conventions

Variables. To define the state of the program, you can define mutable global
variables. These variables can also be one- or two-dimensional arrays. We can
define a global array which holds the current speed for all cars:

Listing 3.3: Boogie: Variable Example

// Array s t o r i n g the speed f o r c a r s
var Speed: [car]int;

Axioms. An axiom can define any property using functions, global variables
and quantifiers. With this, you can state facts about the system. For example,
we can define an axiom to express that the speed of all cars is less or equal to
their maximum speed:

Listing 3.4: Boogie: Axiom Example

// Speed o f a l l c a r s i s l e s s or equa l to t h e i r maximal speed
axiom (forall c: car :: Speed[c] <= max_speed(c));

Procedures. A procedure is basically the signature of a feature. It defines
the arguments, result type, pre- and postcondition, and the frame condition.
We can define a procedure accelerate which takes a car and increases the speed
as follows:

Listing 3.5: Boogie: Procedure Example

// Acc e l e r a t e a car
procedure accelerate(arg: car);

// Not yet at maximal speed
requires Speed[arg] < max_speed(arg);

// Speed i n c r e a s e d
ensures Speed[arg] > old(Speed[arg]);

// Speed o f argument was mod i f i ed
modifies Speed[arg];

Implementations. The implementation is separate from the signature def-
inition. If present, Boogie tries to prove that the implementation adheres to
the specification of the procedure definition. A possible implementation for the
previously declared procedure accelerate is shown in the following example:

Listing 3.6: Boogie: Implementation Example

implementation accelerate(arg: car)

{

Speed[arg] := Speed[arg] + 1;

}

Translation to Boogie - Naming conventions 29

Listing 3.7: Eiffel : Naming example

class LIST

create

make

feature

make

do end

count: INTEGER

is_empty: BOOLEAN

do end

extend (a_item: ANY)

do end

end

3.2 Naming conventions

Boogie has a global namespace for functions, procedures and global values. To
have unique identifiers, we use a naming convention for the translation. The
example from Listing 3.7 is used to illustrate the conventions:

• Attributes: The translation of attribute names is field.CLASS_NAME.

attribute_name. The name for the attribute count is therefore field.

LIST.count.

• Routines: All routines are translated to proc.CLASS_NAME.routine_name.
The routine extend of the example is translated to proc.LIST.extend.

• Creation routines: For creation routines, the translation is create.

CLASS_NAME.routine_name. The name used in Boogie for the creation rou-
tine make is create.LIST.make.

• Functional representation: Side-effect free routines have a functional
representation which is created as fun.CLASS_NAME.routine_name. Since the
routine is_empty of the example class is pure, a functional representation
is generated with the name fun.LIST.is_empty.

• Precondition predicates: The precondition predicates for each routine
are generated as precondition.CLASS_NAME.routine_name. The precondi-
tion predicate of the routine extend is therefore precondition.LIST.extend

.

• Postcondition predicates: The postcondition predicates for each rou-
tine are generated as postcondition.CLASS.routine. The postcondition
predicate used for the routine extend is postcondition.LIST.extend.

30 Translation to Boogie - Background Theory

Listing 3.8: Boogie: Reference types
// Type d e f i n i t i o n f o r r e f e r e n c e types
type ref;

// Constant f o r Void r e f e r e n c e
const Void: ref;

• Heap variable: The global heap uses the name Heap starting with an
uppercase letter. If the heap is used as a bound variable in a quantifier
expression, it starts with a lowercase letter (heap).

3.3 Background Theory

The background theory is a Boogie code file which states the global properties for
all Eiffel systems. It declares the user-defined types used to represent references,
fields and types. It also defines global variables, convenience functions and
axioms expressing basic properties of the system, such as the heap model. In
each proof, we include the background theory file in the generated Boogie file.
The background theory is based on Ballet’s [33] theory and has been adapted
and extended to handle Eiffel types and agents.

3.3.1 Basic Definitions

Reference Types. Boogie has only the built-in support for the basic types
bool and int. In addition, it allows to have user-defined types. As we are using
an object-oriented programming language, we need a reference type. Listing
3.8 shows the definition of the user defined type for references, as well as the
constant denoting void references.

Heap Model. An important part of the background theory is the heap model.
The code for this is shown in Listing 3.9.

To help with type safety, Boogie supports a special generic type. This is
used for the type of fields, which is defined as type Field _. The underscore
stands for the generic content type. When an Eiffel attribute is translated to
Boogie, the Eiffel type of the attribute is used to instantiate the Boogie field
type. Boogie also supports two-dimensional maps. This is used to model the
heap. The type definition for the heap type is a generic two-dimensional map,
where the content type of the map is generic. The heap type instantiates its
generic content type using the previously defined field type. That way, the
content type of the heap is of the same type as a field which is accessed. This
means that unlike generic containers in Eiffel, the content type of the heap
changes with the field argument.

The global value Heap is an entity of the previously defined heap type. It
takes an object reference and a field name and returns the value stored on the

Translation to Boogie - Background Theory 31

Listing 3.9: Boogie: Heap model
// Type f o r f i e l d s (with open subtype)
type Field _;

// Type f o r heap (with g e n e r i c content type)
type HeapType = <beta >[ref, Field beta]beta;

// Function which d e f i n e s a heap
function IsHeap(heap: HeapType) returns (bool);

// The g l o b a l heap
var Heap: HeapType where IsHeap(Heap);

// A l l o ca t ed ghost f i e l d
const $allocated: Field bool;

// Function to check i f an ob j e c t i s a l l o c a t e d
function IsAllocated(heap: HeapType , o: ref) returns (bool);

axiom (forall heap: HeapType , o: ref ::

IsAllocated(heap , o) <==> heap[o, $allocated]);

// Function to check i f an ob j e c t i s a l l o c a t e d and not vo id
function IsAllocatedAndNotVoid(heap: HeapType , o: ref)

returns (bool);

axiom (forall heap: HeapType , o: ref ::

IsHeap(heap) ==> (IsAllocatedAndNotVoid(heap , o) <==>

o != Void && IsAllocated(heap , o)));

heap. To define valid objects, a ghost field $allocated is added. This ghost field
denotes if an object reference is allocated on the heap. If so, the corresponding
heap value Heap[$o, $allocated] is set to true for an object $o. In addition,
there are the convenience functions IsAllocated and IsAllocatedAndNotVoid

which are used in the translation for clarity.

3.3.2 Typing

The type hierarchy is also represented in Boogie. Listing 3.10 shows the rel-
evant section of the background theory. A user-defined type Type is declared
which represents an Eiffel type. Also, the background theory defines the two
convenience functions IsAttachedType and IsDetachedType which are used in the
translation to declare the type of objects.

To define the subtype relationship between types, the partial-order relation-
ship <: of Boogie is used. For all Eiffel types, a constant of type Type is defined
and the inheritance relationship is expressed with the order relation.

32 Translation to Boogie - Background Theory

Listing 3.10: Boogie: Typing
// Type d e f i n i t i o n f o r E i f f e l types
type Type;

// Type f i e l d (a ghost f i e l d)
const unique $type: Field Type;

// Bas i c types
const unique ANY: Type;

// Function to d e c l a r e at tached types
function IsAttachedType(heap: HeapType , o: ref, t: Type)

returns (bool);

// Function to d e c l a r e detached types
function IsDetachedType(heap: HeapType , o: ref, t: Type)

returns (bool);

// Axiom to s t a t e proper ty o f at tached types
axiom (forall heap: HeapType , $o: ref, $t: Type ::

IsAttachedType(heap , $o, $t) ==> ($o != Void &&

IsAllocated(heap , $o) && heap[$o, $type] <: $t));

// Axiom to s t a t e proper ty o f detached types
axiom (forall heap: HeapType , $o: ref, $t: Type ::

IsDetachedType(heap , $o, $t) ==> ($o != Void ==> (

IsAllocated(heap , $o) && heap[$o, $type] <: $t)));

Translation to Boogie - Background Theory 33

Listing 3.11: Boogie: Agent theory
// Pre cond i t i on p r ed i c a t e
function routine.precondition_0 (heap: HeapType , agent: ref)

returns (bool);

// Pos t cond i t i on p r ed i c a t e
function routine.postcondition_0 (heap: HeapType ,

old_heap: HeapType , agent: ref)

returns (bool);

// Frame cond i t i on p r ed i c a t e
function agent.modifies_0 <alpha > (heap: HeapType ,

old_heap: HeapType , agent: ref, $o: ref, $f: Field alpha)

returns (bool);

// Ca l l i n g o f agent
procedure routine.call_0 (

Current: ref where IsAttachedType(Heap , Current , ANY)

);

requires routine.precondition_0(Heap , Current);

modifies Heap;

ensures (forall <alpha > $o: ref, $f: Field alpha ::

($o != Void && old(Heap)[$o , $allocated] &&

!agent.modifies_0(Heap , old(Heap), Current , $o , $f))

==> (old(Heap)[$o , $f] == Heap[$o , $f]));

ensures routine.postcondition_0(Heap , old(Heap), Current);

3.3.3 Agent Theory

To encode the agent methodology presented in Section 2.4, we define several
helper functions in the background theory. The functions in Listing 3.11 are
used for agents without arguments. The number in the suffix denote how many
open arguments the agent has. There are similar functions in the background
theory file which are used for agents with more arguments.

The functions define the abstract pre- and postcondition predicates, as well
as an abstract modifies predicate. The pre- and postcondition predicates de-
note the require and ensure clause of the routine used to create the agent. To
evaluate old expressions, the postcondition predicate takes two heaps, one for
the prestate and one for the poststate of the routine execution. The modifies
predicate takes an arbitrary object and field. The predicate is true, if the field
of the object is in the modifies clause of the original routine used to create the
agent. These three predicates are used in the specification of the call routine of
the agent. By using these predicates, we can express that the call to the agent
has the same effect as a normal call to the original routine would have. See
Section 3.6.5 to see how the predicates are used when an agent is created.

34 Translation to Boogie - Attributes

Listing 3.12: Eiffel : Person class

class PERSON

feature −− Access

first_name: !STRING

middle_name: STRING

year_of_birth: INTEGER

age: NATURAL

is_married: BOOLEAN

end

Listing 3.13: Boogie: Code for basic fields
// At t r i bu t e name
const unique field.PERSON.is_married: Field bool;

// At t r i bu t e name
const unique field.PERSON.year_of_birth: Field int;

// At t r i bu t e name
const unique field.PERSON.middle_name: Field ref;

3.4 Attributes

The translation for attributes is straightforward. Each attribute of a class is
translated to a unique identifier in Boogie which specifies the heap location
where the value of the attribute is stored. Special care has to be taken for built
in Eiffel types with an additional semantics. This is the case for attached types
and natural numbers.

The Eiffel class from Listing 3.12 is used to show the translation for different
attribute types.

Basic Attributes. The translation of the basic field types - boolean, integer
and reference - is the most simple one. There is just a constant definition for
the heap location where the value of this field is stored. The Boogie code in
Listing 3.13 shows the translation for the fields is_married, year_of_birth, and
middle_name from Listing 3.12. Note that the generic subtype for the heap
content type Field has been instantiated with the actual field types bool, int,
and ref.

Translation to Boogie - Routine Signature 35

Listing 3.14: Boogie: Boogie code for natural field
// At t r i bu t e name
const unique field.PERSON.age: Field int;

// Axiom f o r type NATURAL
axiom (forall heap: HeapType , $o: ref ::

IsHeap(heap) && IsAllocatedAndNotVoid(heap , $o) ==>

heap[$o, field.PERSON.age] >= 0);

Listing 3.15: Boogie: Code for attached field
// At t r i bu t e name
const unique field.PERSON.first_name: Field ref;

// Axiom f o r at tached types
axiom (forall heap: HeapType , $o: ref ::

IsHeap(heap) && IsAllocatedAndNotVoid(heap , $o) ==>

IsAllocatedAndNotVoid(heap ,

heap[$o, field.PERSON.first_name]));

Natural Attributes. Fields of type natural have the guaranteed property
that they never hold a negative value. As Boogie does not have a specific
type for natural values, this property has to be expressed with an additional
condition. This can be done with an axiom which states that for all objects on
the heap, the heap location for the natural field is always non-negative. The
axiom is constrained to only valid heaps and objects. The code in Listing 3.14
shows the translation of the Eiffel attribute age from Listing 3.12.

Attached Attributes. Like natural fields, attached fields have an additional
property which is guaranteed by the type system. For attached fields, this
property states that the field will never point to a void reference. Again, as
Boogie does not have a specific type for this, an axiom can be defined which
expresses this characteristic. The axiom expresses that for all objects on the
heap, the heap location for the attached field is a valid non-void reference. The
code in Listing 3.15 shows the translation of the Eiffel attribute first_name from
Listing 3.12.

3.5 Routine Signature

Since we are doing modular verification on the level of routines, the translation
of the routine signature is an essential part of the translation process. We use
the example from Listing 3.16 to illustrate the translation of routine signatures.
The example shows the interface description of the make routine of the class
ACCOUNT. The Boogie code which is generated for this routine is shown in the
Listings 3.17 and 3.18. The following sections explain the generated code.

36 Translation to Boogie - Routine Signature

Listing 3.16: Eiffel : Interface of Account

class ACCOUNT

2
create

4 make

6 feature {NONE}

8 make (a_initial_amount: INTEGER)

−− I n i t i a l i z e account with ‘ a i n i t i a l amoun t ’ .
10 require

a_initial_amount >= 0

12 ensure

balance = a_initial_amount

14
feature

16
−− . . . o the r f e a t u r e s

18
invariant

20 balance >= 0

22 end

3.5.1 Procedure Definition

For each Eiffel routine a Boogie procedure is created. The name of the translated
routine is generated according to the naming convention (see Section 3.2). The
name which is created for the routine make from the class ACCOUNT is proc.ACCOUNT
.make. The procedure is defined by using the procedure keyword (Listing 3.17,
line 21). The procedure is followed by the list of arguments and, if the translated
routine is a query, the return value. After the signature follows a list of requires,
ensures, and modifies statements.

In addition to normal requires and ensures statements, there are free requires
and ensures. The free statement are used by the prover like normal requires and
ensures statements, but the free statements are not proven. This means that
a free requires statement is assumed when the procedure implementation is
proven, but it is not checked like a precondition when the procedure is called.
The free ensures statement on the other hand is assumed to hold after the
call to the procedure, but it is not proven if the implementation establishes this
postcondition.

3.5.2 Arguments

To model the object-oriented Eiffel with the procedural Boogie, we add an
additional argument to all procedures which denotes the target object of a
routine call (Listing 3.17, line 22). This argument is always called Current.

Translation to Boogie - Routine Signature 37

Listing 3.17: Boogie: Translation of routine make
// Pre cond i t i on p r ed i c a t e

2 function precondition.ACCOUNT.make(heap: HeapType ,

current: ref, arg1: int) returns (bool);

4
axiom (forall heap: HeapType , current: ref, arg1: int ::

6 (arg1 >= 0)

==> (precondition.ACCOUNT.make(heap , current)));

8
// Pos t cond i t i on p r ed i c a t e

10 function postcondition.ACCOUNT.make(heap: HeapType ,

old_heap: HeapType , current: ref, arg1: int)

12 returns (bool);

14 axiom (forall heap: HeapType , old_heap: HeapType ,

current: ref, arg1: int ::

16 (postcondition.ACCOUNT.make(heap , old_heap ,

current , arg1))

18 ==> (heap[current , field.ACCOUNT.balance] == arg1));

20 // Routine make from c l a s s ACCOUNT
procedure proc.ACCOUNT.make(

22 Current: ref where IsAttachedType(Heap ,Current ,ACCOUNT),

arg1: int

24);

// Pre− and po s t c ond i t i o n p r e d i c a t e
26 requires precondition.ACCOUNT.make(Heap , Current , arg1);

free ensures postcondition.ACCOUNT.make(Heap , old(Heap),

28 Current , arg1);

30 // Pre− and po s t c ond i t i o n
free requires arg1 >= 0;

32 ensures Heap[Current , field.ACCOUNT.balance] == arg1;

34 // Clas s i nva r i an t , r ou t i n e ent ry
free requires Heap[Current , field.ACCOUNT.balance] >= 0;

36 // Clas s i nva r i an t , r ou t i n e e x i t
ensures Heap[Current , field.ACCOUNT.balance] >= 0;

38
// Frame cond i t i on

40 modifies Heap;

ensures (forall <alpha > $o: ref, $f: Field alpha ::

42 $o != Void && IsAllocated(old(Heap), $o) &&

(!($o == Current && $f == field.ACCOUNT.balance))

44 ==> (old(Heap)[$o, $f] == Heap[$o , $f]));

38 Translation to Boogie - Routine Signature

The arguments to the Eiffel routine are then added as normal arguments. For
all reference types, we define the type of the argument in the signature using
the typing functions declared in the background theory (see Section 3.3.2).

3.5.3 Pre- and Postconditions

In line with the methodology for dynamic invocation from Section 2.3, we in-
troduce an abstract pre- and postcondition predicate for each routine. For the
routine make, these are declared on line 2 and line 10 of Listing 3.17. For these
predicates, we also define the axioms which define the connection between the
abstract predicates and the concrete contracts. The axioms for the pre- and
postcondition are declared on line 5 and line 14 of Listing 3.17. We then use
these predicates in the specification of the procedure. The precondition predi-
cate is added as a requires statement on line 26 and the postcondition predicate
as a free ensures statement on line 27. In addition to these two predicates,
the actual pre- and postcondition of the routine are also added directly to the
procedure definition. The precondition is added on line 31 as a free requires

statement, and the postcondition is added on line 32 as an ensures statement.

By adding the precondition predicate as a requires statement, the caller of
the procedure has to prove that the predicate holds. On the call site, the caller
can use the dynamic type to assert the precondition. With the methodology
we introduced, the precondition predicate can hold even if the concrete precon-
dition is violated. This can be the case if the precondition is weaker for the
dynamic type. When the verifier is proving the implementation, the requires
statement of the procedure are assumed to hold at the beginning of the exe-
cution. We add the concrete precondition in the procedure definition as a free
requires statement, so that the verifier is using this precondition when the pro-
cedure implementation is proven. Since we are using a free requires statement,
this does not interfere with the call of the procedure. On the call site, only the
precondition predicate is proven to hold prior to the call. For the postcondition
it is the other way around. When the implementation is proven, the verifier is
checking that the ensures statement hold after the procedure execution. There-
fore, we use a normal ensures statement for the concrete postcondition. The
verifier will then check the concrete postcondition at the end of the procedure.
On the call site, the client can use the postcondition predicate which is added
as a free ensures statement in addition to the concrete postcondition. Using
the postcondition predicate, the caller can use the postcondition of the dynamic
type. As the postcondition can only be strengthend, the use of both the concrete
postcondition and the postcondition predicate is sound.

3.5.4 Class Invariants

When a routine is called, the target object has to be in a valid state. Therefore,
the class invariant of the target object has to hold at the beginning of the routine
execution. We encode this by using a free requires statement in the procedure
definition (see Listing 3.17, line 35). By using a free precondition, the invariant
is assumed to hold when the routine body is proven, but the client does not

Translation to Boogie - Routine Signature 39

have to prove this. The invariant can be violated during the execution of the
routine, but has to hold again after the execution. This is enforced by adding
the invariant as a postcondition to the procedure definition (see Listing 3.17,
line 36). The verifier will prove if the routine does establish the class invariant
after the execution.

Note that this encoding is too simplistic. It cannot handle routine calls to
other objects which may return to the original object. Improvements of the
invariant encoding is future work (see Section 7.2).

3.5.5 Frame Condition

Boogie offers the modifies keyword to support the encoding of frame condi-
tions. The keyword denotes global variables which may be changed during the
execution of the procedure. This semantics is not expressive enough to encode
the agent methodology. Therefore we use a different encoding of the frame
condition. We always invalidate the whole heap with the modifies statement
(Listing 3.17, line 40). In addition to the modifies statement, we add an addi-
tional postcondition which expresses the frame condition. The frame condition
for the routine make is shown on line 41 of Listing 3.17. This is an encoding
of the formula 2.5 from Section 2.5, which expresses that all locations on the
heap which were not modified remain unchanged. For this routine, the modi-
fies clause contains only the field balance, therefore only this field is allowed to
change. As we use a normal ensures statement, the verifier is proving that the
implementation respects the frame condition.

For pure routines, the encoding can be simplified to Heap = old(Heap).

3.5.6 Creation Routines

The semantics for invariants is different for creation routines. The invariant does
not hold at the beginning of the routine. Therefore, we cannot use the previously
created procedure definition for creation routines. For each creation routine, we
create a special procedure definition. Listing 3.18 shows the translation for
the creation routine make of the class ACCOUNT from Listing 3.16. The only
difference to the procedure definition for the routine make as a normal routine
is the invariant section. The free requires clause which states that the invariant
holds at the beginning of the routine is missing.

3.5.7 Pure Functions

A pure function can be used in a contract. In Boogie, expression are used to
write the specifications. Expressions cannot contain a procedure call. We there-
fore need another representation of a pure routine in addition to the translation
to a Boogie procedure. This is a functional representation, using a function in
Boogie. To create the functional representation, we use the pre- and postcon-
dition of the routine. The routine is_empty in Listing 3.19 is an example of a

40 Translation to Boogie - Routine Signature

Listing 3.18: Boogie: Translation of creation routine make
// Creat ion r ou t i n e make from c l a s s ACCOUNT

2 procedure create.ACCOUNT.make(

Current: ref where IsAttachedType(Heap ,Current ,ACCOUNT),

4 arg1: int

);

6
// Pre− and po s t c ond i t i o n p r ed i c a t e

8 requires precondition.ACCOUNT.make(Heap , Current , arg1);

free ensures postcondition.ACCOUNT.make(Heap , old(Heap),

10 Current , arg1);

12 // Pre− and po s t c ond i t i o n
free requires arg1 >= 0;

14 ensures Heap[Current , field.ACCOUNT.balance] == arg1;

16 // Clas s i nva r i an t , r ou t i n e e x i t
ensures Heap[Current , field.ACCOUNT.balance] >= 0;

18
// Frame cond i t i on

20 modifies Heap;

ensures (forall <alpha > $o: ref, $f: Field alpha ::

22 $o != Void && IsAllocated(old(Heap), $o) &&

(!($o == Current && $f == field.ACCOUNT.balance))

24 ==> (old(Heap)[$o , $f] == Heap[$o , $f]));

Listing 3.19: Eiffel : Pure routine

class LIST

2
feature

4
is_empty: BOOLEAN

6 require

True

8 do

Result := count = 0

10 ensure

Result = (count = 0)

12 end

14 end

Translation to Boogie - Routine Implementation 41

Listing 3.20: Boogie: Pure routine
// Funct i ona l r e p r e s e n t a t i o n o f i s empty

2 function fun.LIST.is_empty(heap: HeapType , current: ref)

returns (bool);

4
axiom (forall heap: HeapType , current: ref ::

6 true ==> (fun.LIST.is_empty(heap , current) ==

(heap[current , field.LIST.count] == 0)));

pure routine. Listing 3.20 shows the translation to a functional representation
in Boogie.

In the translation we first generate a function for the routine. The function
takes the heap, the target object, and the routine arguments (if any) as argu-
ment. The return type of the Boogie function is the same as the return type of
the Eiffel function. In addition to the Boogie function, we define an axiom. The
axiom expresses that for all possible arguments to the function, if the arguments
satisfy the precondition, the postcondition of the function holds. In the post-
condition, the entity Result is replaced by the functional representation of the
Eiffel query. This replacement expresses that the call to the query establishes
the postcondition. The functional representation of queries is used whenever a
query is used in a contract.

3.6 Routine Implementation

For each routine, we translate the body of the routine to an implementation
block in the Boogie code file. We use the example in Listing 3.21 to show the
translation of a routine body as well as the translation of several important
instructions. Listing 3.22 shows the Boogie code of the translation. In the
following sections, we explain the individual segments of the translated code.

3.6.1 Structure

An implementation block is started with the keyword implementation. This
keyword is followed by the name of the procedure including the signature. As
the routine main of Listing 3.21 has no arguments, only the reference to the
current object is passed as a parameter.

Following the declaration of the block is the list of local variables. In our
translation, there are two kinds of local variables: translation of local variables
from Eiffel and variables temporarily used in the translation. The local variables
from Eiffel are mapped directly to one local variable in the Boogie implementa-
tion. As the Eiffel compiler uses only an index variable to store local variables,
the names of locals are not preserved in the translation. The temporary vari-
ables are used in the translation of object creation (see Section 3.6.2).

42 Translation to Boogie - Routine Implementation

Listing 3.21: Eiffel : Implementation example

class CLIENT

2
feature

4
main

6 local

a1, a2: ACCOUNT

8 p: PROCEDURE [ANY , TUPLE [INTEGER]]

do

10 −− Object c r e a t i o n
create a1.make

12
−− Assignment

14 a2 := a1

my_account := a1

16
−− Feature c a l l

18 a1.deposit (10)

my_account.deposit (20)

20
−− Agent c r e a t i o n

22 p := agent a1.deposit (?)

24 −− Agent c a l l
p.call ([30]);

26
−− Check i n s t r u c t i o n

28 check a1.balance = 60 end

end

30
my_account: ACCOUNT

32
end

Translation to Boogie - Routine Implementation 43

Listing 3.22: Boogie: Implementation example
implementation proc.CLIENT.main(Current: ref) {

2 var temp1: ref, temp2: ref;

var local1: ref, local2: ref, local3: ref;

4
entry:

6 // I n i t i a l i z a t i o n o f l o c a l s
local1 := Void;

8 local2 := Void;

local3 := Void;

10
// Object c r e a t i o n

12 havoc temp1;

assume (temp1 != Void) && (!Heap[temp1 , $allocated]);

14 Heap[temp1 , $allocated] := true;

Heap[temp1 , $type] := ACCOUNT;

16 call create.ACCOUNT.make(temp1);

local1 := temp1;

18
// Assignment

20 local2 := local1;

Heap[Current , field.CLIENT.my_account] := local1;

22
// Feature c a l l

24 call proc.ACCOUNT.deposit(local1 , 10);

call proc.ACCOUNT.deposit(

26 Heap[Current , field.CLIENT.my_account], 20);

28 // Agent c r e a t i o n
havoc temp2;

30 assume (temp2 != Void) && (!Heap[temp2 , $allocated]);

Heap[temp2 , $allocated] := true;

32 Heap[temp2 , $allocated] := ANY;

assume (forall heap: HeapType , a1: int ::

34 routine.precondition_1(heap , temp2 , a1) <==> (a1 >= 0));

assume (forall <alpha > heap: HeapType , old_heap: HeapType ,

36 a1: int, $o: ref, $f: Field alpha ::

agent.modifies_1(heap , old_heap , temp2 , a1 , $o , $f) <==>

38 ($o == local1 && $f == field.ACCOUNT.balance));

assume (forall heap: HeapType , old_heap: HeapType ,

40 a1: int ::

routine.postcondition_1(heap , old_heap , temp2 , a1) <==>

42 ((heap[local1 , field.ACCOUNT.balance] ==

old_heap[local1 , field.ACCOUNT.balance] + a1)));

44
// Agent c a l l

46 call routine.call_1(local3 , 20);

48 // Check i n s t r u c t i o n
assert Heap[local1 , field.ACCOUNT.balance] == 30;

50
return;

52 }

44 Translation to Boogie - Routine Implementation

The starting point for the implementation is denoted by the label entry

(Listing 3.22, line 5). This is where Boogie will start the execution of the
implementation block. The exit point is defined by the keyword return (Listing
3.22, line 51). As Eiffel does not have a return statement in the language, the
exit point of the implementation block is always the last statement before the
block is closed.

Right after the entry label, the local variables are initialized to their default
values (Listing 3.22, line 7): reference types are set to void, integers to zero, and
booleans to false. This is necessary to have the behavior of default initialization
as one expects it from Eiffel. Note that the temporary locals are not initialized
to default values, since they are always properly initialized at the point where
they are used.

The translation of the routine body is added between the initialization of
the local variables and the return statement.

3.6.2 Object creation

When an object is created (Listing 3.21, line 11), we need to take an unused
heap location where we can allocate the new object. In Boogie, we do this by
using a new reference variable and setting it to a random value. This is done by
the havoc statement (Listing 3.22, line 12). Then, we assume that the random
value is not the void reference and that the new reference points to a location on
the heap which is not yet allocated (Line 13). With this information, the prover
can deduce that the reference is different from all other references to existing
objects. On the next lines, we set the allocation ghost field and the type of the
new object. Finally, we call the creation routine to initialize the new object
(Line 16).

The creation of objects always uses a temporary variable to do the initial-
ization. After the creation, we therefore have to assign the new reference to
the target of the creation. We do the creation in this way, as there are situa-
tion where you do not have a target for the creation, for example if you pass
the newly created object directly as an argument of a feature call. By using a
temporary variable, we can just pass the temporary variable as the argument
in this case.

3.6.3 Assignment

To translate the assignments to locals or attributes on line 14 and line 15 of
Listing 3.21, we use the assignment operator of Boogie. In the case of a local
variable, we just assign to the corresponding local variable in the Boogie code
(Listing 3.22, line 20).

Assignments to attributes are translated as updates on the global heap vari-
able. As Eiffel only allows assignments on the current object, the procedure
argument Current is always used in Boogie for the reference on the heap. By
translating the attribute name, we get the appropriate field name for the sec-
ond argument to the heap. The translation of the assignment uses again the

Translation to Boogie - Routine Implementation 45

assignment operator of Boogie (Listing 3.22, line 21).

3.6.4 Routine calls

We use the procedure call of Boogie to translate routine calls. As Boogie is
not object-oriented, we pass the target object as the first parameter. The call
to deposit on line 18 in Listing 3.21 is translated to the procedure call to proc

.ACCOUNT.deposit on line 24 in Listing 3.22. The target object is the local
variable a1, which is translated to the local variable local1 in the Boogie code.
Additional arguments to the routine are passed as usual to the Boogie procedure.

The second call which is invoked on the attribute account (Listing 3.21, line
19) is again translated to a procedure call in Boogie (Listing 3.22, line 26). As
the target object is an attribute of the current class, the target is passed by
accessing the heap at the appropriate location.

3.6.5 Agent Creation

The translation for the creation of an agent is probably the most complex one.
In the first part we create the agent object, similar to the creation of other
objects as it is described in Section 3.6.2. As EVE Proofs does not yet handle
generic types, we currently set the type for the agent to ANY. After the initial-
ization of the object, according to the agent methodology from Section 2.4, we
have to generate the assumptions to link the abstract predicates of the agent
methodology to the concrete contracts of the agent. These assumptions are
shown in Listing 3.22:

• Line 33 shows the assumption to link the abstract precondition predi-
cate (routine.precondition_1) to the concrete precondition of the routine
deposit.

• Line 35 shows the assumption to link the abstract modifies predicate
(agent.modifies_1) to model the concrete modifies clause of the routine
deposit. In line with the automatic extraction of modifies clauses, de-
scribed in Section 2.5, only the attribute balance may change.

• Line 39 shows the assumption to link the abstract postcondition predicate
(routine.postcondition_1) to the concrete postcondition of the routine
deposit.

3.6.6 Agent Call

The call to the routine call of an agent is not translated as a normal routine call.
The reason is that the methodology for agents uses different predicates depend-
ing on the number of open arguments to the agent. The background theory
defines special procedures to call agents with different numbers of arguments
(see Section 3.3.3).

46 Translation to Boogie - Control Structures

Listing 3.23: Eiffel : Conditional

if condition1 then

block1

elseif condition2 then

block2

else

block3

end

In the example in Listing 3.21, the agent on line 22 has one open argument.
The call to the agent is therefore translated to a call to routine.call_1 from the
background theory (see Listing 3.22, line 46). The tuple which is used in the
Eiffel code as an argument is ignored and its contents are directly passed to the
call procedure of the agent. This means that only manifest tuples are supported
as arguments to agent calls. This implementation needs to be adapted when
generics are implemented and tuples are supported.

3.6.7 Check Instruction

Check instructions of Eiffel are directly translated to assert statements in Boo-
gie. The check on line 28 in Listing 3.21 is translated to the assertion on line
49 in Listing 3.22. If a check instruction contains multiple assertions, an assert

statement is generated for each one of them.

3.7 Control Structures

Boogie supports a nondeterministic jump instruction called goto. The goto

statement lists one or more labels and one of them is chosen at random. We
use this jump instruction to translate control flow structures by modeling the
control flow graph. The translation we use is directly taken from Ballet [33].

3.7.1 Conditional

To show the translation of the conditional statement, we use the abstract exam-
ple from Listing 3.23. The translation is shown in Listing 3.24. The translation
of the conditions and blocks are designated with the prefix b.

For the conditional, we use the nondeterministic goto to jump to either the
if-branch or the else-branch. When we take the if-branch, we know that the
condition has to hold. We model this by assuming the condition. In the else-
branch the condition does not hold. Again, we model this by an assumption,
but this time assuming the negated condition.

To model cascading conditionals, we just consider them as single if-then-
else statements where the second conditional is in the else-block of the first

Translation to Boogie - Control Structures 47

Listing 3.24: Boogie: Conditional
goto if_branch1 , else_branch2;

if_branch1:

assume (b_condition1);

b_block1

goto end5;

else_branch2:

assume (! b_condition1);

goto if_branch3 , else_branch4;

if_branch3:

assume (b_condition2);

b_block2

goto end5;

else_branch4:

assume (! b_condition2);

b_block3

goto end5;

end5:

conditional.

3.7.2 Loop

To illustrate how we translate the loop, we use the abstract example of Listing
3.25. The Boogie code for the loop is shown in Listing 3.26. Again, the Boogie
translation of the Eiffel blocks and conditions are designated by the prefix b.

In the translation of the loop, we first execute the statements of the from
block. This block has to establish the loop invariant, thus we assert that the
invariant holds at this point. Then, the control flow either enters the loop if the

Listing 3.25: Eiffel : Loop

from

block1

invariant

inv

until

exit_condition

loop

block2

end

48 Translation to Boogie - Tracing Errors

Listing 3.26: Boogie: Loop
b_block1

assert (b_inv);

goto loop_body , loop_exit;

loop_body:

assume (! b_exit_condition);

b_block2

assert (b_inv);

goto loop_body , loop_exit;

loop_exit:

assume (b_exit_condition);

Listing 3.27: Boogie: Comment format for error tracing
requires a > 0; // pre ACCOUNT:14 tag : a p o s i t i v e
ensures Result /= Void; // post FACTORY:18
ensures Heap == old(Heap); // frame LIST : i s empty
assert i < n; // loop ITERATOR:24

exit condition is not yet met or does not enter the loop at all. This is modeled
by using a nondeterministic goto to jump to the loop body and the loop exit.
If we enter the loop body, we know that the exit condition is not yet fulfilled.
Thus, we assume the negated condition before executing the loop body. After
the body, the loop invariant has to hold again, which is checked by asserting the
loop invariant. After the invariant check, there is again a nondeterministic jump
to the beginning of the loop body or the loop exit. This models the behavior of
either re-executing the loop body or exiting the loop. After the loop, the exit
condition is true. Therefore, we assume that the condition holds after the loop.

3.8 Tracing Errors

In order to trace Boogie errors back to the Eiffel source, we annotate the gen-
erated Boogie with location information. Each assertion in Boogie — either a
requires, ensures or assert — has a comment describing what type of assertion
it is and from which Eiffel source it was generated.

The comments have the format TYPE CLASS:LOCATION tag:TAG NAME, where
TYPE describes which type of assertion it is, CLASS is the classname and LOCATION
either the line number or feature name in the Eiffel source. If the assertion in
Eiffel has a tag, it is also added to the Boogie comment. Listing 3.27 shows
some examples of assertions with the corresponding annotations.

The available assertion types are:

• pre: A precondition.

Translation to Boogie - Tracing Errors 49

• post: A postcondition.

• inv: A class invariant.

• loop: A loop invariant.

• check: A check instruction.

• attached: An attachment check for the target of a feature invocation.

• frame: A frame condition.

Chapter 4

User Interface

EVE Proofs is integrated in EVE as a separate tool. Figure 4.1 shows a screen-
shot of EVE with the proof tool in the lower left. This chapter describes how
this tool is used and how the feedback of the verification is displayed.

Figure 4.1: Proof tool as part of EVE

51

52 User Interface - Starting a Proof

4.1 Starting a Proof

There are two ways to start a proof: you can use the proof button or the context
menu.

Figure 4.2: Proof button with the drop-down menu to select the mode of oper-
ation

Proof Button. The proof button is available in the project toolbar and in
the toolbar of the proof tool. It has three different modes of operation which
can be selected by the drop-down menu on the button. Figure 4.2 shows an
image of the proof button with the drop-down menu. The three different modes
are:

• Prove current item: The class or cluster which is open in the editor is
proven. When you prove a cluster, it will recursively prove all contained
classes and clusters.

• Prove parent cluster of current item: This mode proves the parent
cluster of the currently opened class or cluster. Again, it recursively proves
all contained classes and clusters.

• Prove system: The last mode proves all classes in the system. This does
not include libraries.

When you just press the button, it will execute the last mode which was
selected. The last selected mode is indicated in the drop-down menu with a tick
mark. In addition to pressing the button, you can also drop a class or cluster
pebble on the button to prove the dropped item.

Context Menu. A prove menu entry is added to the context menu of all
classes, clusters and libraries. This entry starts the proof of the selected item.
Figure 4.3 shows an image of the context menus.

4.2 Result Display

Figure 4.4 shows the proof tool after a verification has run. A row is added
for each routine which was proven. The row displays the routine, the result of
the verification, and how much time it took to verify the feature. Additional
information is shown depending on the result of the verification:

User Interface - Result Display 53

Figure 4.3: Context menu for classes, clusters and libraries which include the
prove menu item

Figure 4.4: Proof tool which shows the results of the verification

54 User Interface - Result Display

• No further information is given if the feature is proven to be correct. The
background color of these rows is set to green.

• If the prover skipped a feature, the reason for doing so is displayed. Rows
of skipped features are shown in yellow.

• If the verification failed, the summary for the error or multiple errors is
shown. The row can be expanded to show the full error message. Figure
4.5 shows the proof tool with expanded rows for the failed features. Failed
rows have a red background color.

Figure 4.5: Proof tool where the rows of failed proofs are expanded to show the
full error message

The result table can be sorted and filtered. The sorting is selected by clicking
the appropriate table header. The rows can be filtered by the result type or by
a search string. Three buttons toggle the display for successful, skipped, and
failed routines. A string can be entered in the search box to filter the table to
only show those rows which have the search string in any of the columns. The
image in Figure 4.6 shows an example where the proof tool only shows failed
routines which have the string violation in their name.

User Interface - Result Display 55

Figure 4.6: Filtered result table which shows only failed routines which contain
the string violation in the name

Chapter 5

Implementation

This chapter describes the implementation of EVE Proofs and the integration
in EVE. The proof engine, which handles the translation of Eiffel to Boogie and
runs the theorem prover, is totally separate and only depends on the core of the
EiffelStudio compiler. The user interface of EVE Proofs needs classes which are
not available through libraries and thus this part is directly integrated in EVE.

The following sections give an overview of the implementation of the proof
engine and the user interface.

5.1 Proof Engine

The proof engine is responsible to create Boogie code for the input classes,
launch Boogie on the created code, and to evaluate the result. The engine
is implemented as a separate library. The different parts of the engine are
described below.

External Interface. To use the proof engine, clients can use a single class
called EVE PROOFS (facade pattern [20]). All the classes which should be proven
can be added by calling add class to verify. The prover is then started with
execute verification. This is the whole interaction from the client side.

When the verification is started, the Boogie code generator is invoked for
each class which has been added. After the Boogie code is generated, the Boogie
verifier is invoked. The results of the verification are not directly returned to
the client. Instead, an event service is used where the results are published.

Related class: EVE PROOFS

Boogie Code Generator. The Boogie code generator is the starting point for
the translation of Eiffel to Boogie. It can handle whole classes, single features,
and types. It further delegates the work to the various writer classes.

Related class: BOOGIE CODE GENERATOR

57

eiffel:?class=EVE_PROOFS
eiffel:?class=EVE_PROOFS
eiffel:?class=BOOGIE_CODE_GENERATOR

58 Implementation - Proof Engine

Code Writers. The writer classes are responsible to translate the actual Eif-
fel code to Boogie code. There are various different classes which handle a single
aspect of the translation. The translation for the Eiffel code is done by process-
ing the byte code tree - a simplified abstract syntax tree - using the visitor
pattern [20].

• EP ATTRIBUTE WRITER: Creates the Boogie constant to denote the heap lo-
cation for the attribute.

• EP CONSTANT WRITER: Translates a constant feature to Boogie.

• EP CONTRACT WRITER: Given a feature, this class creates the Boogie repre-
sentation of the pre- and postcondition.

• EP EXPRESSION WRITER: This class translates all expressions to Boogie.

• EP FUNCTION WRITER: Creates a functional representation for pure routines
and creates the axioms for the pre- and postcondition predicates.

• EP IMPLEMENTATION WRITER: Processes the body of a routine and creates the
Boogie implementation block.

• EP INSTRUCTION WRITER: Translates single instructions like assignment and
conditional statements to Boogie.

• EP SIGNATURE WRITER: Creates the Boogie code for routine signatures.

• EP TYPE WRITER: Translates types to Boogie and handles the inheritance
relationship.

The writer classes use several helper classes, for example EP FRAME EXTRACTOR,
which handles the automatic extraction of modifies clauses. The frame ex-
traction is used for example in the feature process routine creation b of class
EP EXPRESSION WRITER to generate the assumptions needed for the agent framing.

Referenced Features and Types. All used Eiffel features and types are
recorded during the creation of the Boogie code. These lists are processed
in the end to create the signature for all referenced features and types. The
implementation for the routines is omitted though, as the referenced routines
are not verified.

Related classes: EP FEATURE LIST, EP TYPE LIST

Output Buffering. All created Boogie code is stored in output buffers. Each
writer class has its own buffer. These buffers are then subsequently put together
to form the final Boogie code.

Related class: EP OUTPUT BUFFER

eiffel:?class=EP_ATTRIBUTE_WRITER
eiffel:?class=EP_CONSTANT_WRITER
eiffel:?class=EP_CONTRACT_WRITER
eiffel:?class=EP_EXPRESSION_WRITER
eiffel:?class=EP_FUNCTION_WRITER
eiffel:?class=EP_IMPLEMENTATION_WRITER
eiffel:?class=EP_INSTRUCTION_WRITER
eiffel:?class=EP_SIGNATURE_WRITER
eiffel:?class=EP_TYPE_WRITER
eiffel:?class=EP_FRAME_EXTRACTOR
eiffel:?class=EP_EXPRESSION_WRITER
eiffel:?class=EP_FEATURE_LIST
eiffel:?class=EP_TYPE_LIST
eiffel:?class=EP_OUTPUT_BUFFER

Implementation - User Interface 59

Boogie Execution. The Boogie verifier class takes the created code and cre-
ates a Boogie code file. This file is then fed to the Boogie executable in a
separate process. The Boogie verifier is launched with the /trace command line
argument, which tells Boogie to display more output information about the ver-
ified routines. This information is used to improve the display of the results.
When Boogie is finished, the output from the execution as well as the input file
are given to the output parser for further processing.

Related class: BOOGIE VERIFIER

Output Parser. The output parser is handling the output of Boogie. It
takes the output and parses it line by line using a set of regular expressions.
For successful proofs, it publishes a successful event. When Boogie reports a
violation, it looks at the appropriate line in the Boogie code file to trace the
error back to the Eiffel program. For each routine which could not be proven,
a failed event is published along with a list of error messages for this routine.

Related class: BOOGIE OUTPUT PARSER

Event Service. To report the results of a proof to the proof tool, the Eiffel-
Studio event service is used. This service allows for an arbitrary publisher to
post events to multiple unknown consumers.

EVE Proofs uses this service to publish events when a proof was successful,
failed, or had to be skipped. All events contain information to identify which
routine or class is concerned. The skipped events additionally have the reason
for skipping the routine. Failed events have a list of errors passed as part of the
event.

By using the event service, it is easy to extend the feedback or do further
processing of the information. You can just add a new consumer which listens
to the proof events and you will get informed about the proof results.

Related classes: EVENT LIST PROOF ITEM I and subclasses, EP EVENT HANDLER

5.2 User Interface

The user interface is implemented as an EiffelStudio command and an Eiffel-
Studio tool.

Proof Command. EiffelStudio uses the command pattern [20]. For starting
proofs, there is a single command class which starts the verifier. Depending on
the input for the command, either the whole system, a library, a cluster, or a
single class is proven.

Related class: EB PROOF COMMAND

eiffel:?class=BOOGIE_VERIFIER
eiffel:?class=BOOGIE_OUTPUT_PARSER
eiffel:?class=EVENT_LIST_PROOF_ITEM_I
eiffel:?class=EP_EVENT_HANDLER
eiffel:?class=EB_PROOF_COMMAND

60 Implementation - User Interface

Proof Tool. The proof tool is implemented as a subclass of the general event
list tool. It is similar to the errors and warnings display. The tool listens
to incoming events from the event service. When it receives a proof event, it
displays the information in the results table.

Related classes: ES PROOF TOOL, ES PROOF TOOL PANEL

Internationalization. All messages which appear in the user interface use
the EiffelStudio translation mechanism. This allows to translate the proof tool
in the same way as the rest of EiffelStudio.

Related class: EP NAMES

Changes to EiffelStudio. As EiffelStudio does not have a plug-in mecha-
nism, some changes to existing classes were necessary. These changes are:

• Adding the proof tool to the menu.

• Adding the prove menu item to the context menu for clusters, classes, and
libraries.

• Adding the prove button to the toolbar.

More information about adding a tool to EiffelStudio is available on the
development wiki [7].

Related classes: EB DEVELOPMENT WINDOW COMMANDS, EB DEVELOPMENT WINDOW MAIN BUILDER,

EB DEVELOPMENT WINDOW MENU BUILDER, EB CONTEXT MENU FACTORY, EB DEBUGGER MANAGER

eiffel:?class=ES_PROOF_TOOL
eiffel:?class=ES_PROOF_TOOL_PANEL
eiffel:?class=EP_NAMES
eiffel:?class=EB_DEVELOPMENT_WINDOW_COMMANDS
eiffel:?class=EB_DEVELOPMENT_WINDOW_MAIN_BUILDER
eiffel:?class=EB_DEVELOPMENT_WINDOW_MENU_BUILDER
eiffel:?class=EB_CONTEXT_MENU_FACTORY
eiffel:?class=EB_DEBUGGER_MANAGER

Chapter 6

Case Studies

This section gives an overview of some of the examples we are able to verify.
You will find the source code for the examples in the EiffelStudio repository [6],
specifically in the examples directory of the EVE branch [8].

6.1 Account

The account example in Listing 6.1 shows the use of the automatic frame con-
dition extraction for simple programs. The problem is to verify the check con-
ditions on line 11 and 12. The account class which is used is shown in Listing
6.2.

To prove the first check instruction we need to prove that the calls a2.make

and a2.withdraw did not change the balance field of a1. To reason about the
effect of the routine calls on other objects, we need to know the modifies clause
of the routines of class ACCOUNT. As the postconditions of make, deposit, and
withdraw only mention the attribute balance of the current object, the frame

Listing 6.1: Eiffel : Account client

class CLIENT

2
main

4 local

a1, a2: ACCOUNT

6 do

create a1.make (100)

8 create a2.make (200)

a1.deposit (50)

10 a2.withdraw (180)

check a1.balance = 150 end

12 check a2.balance = 20 end

end

14
end

61

62 Case Studies - Formatter

Listing 6.2: Eiffel : Account class

class ACCOUNT

2
make (a_initial_amount: INTEGER)

4 require

a_initial_amount >= 0

6 do

balance := a_initial_amount

8 ensure

balance = a_initial_amount

10 end

12 balance: INTEGER

14 deposit (amount: INTEGER)

require

16 amount >= 0

do

18 balance := balance + amount

ensure

20 balance = old balance + amount

end

22
withdraw (amount: INTEGER)

24 require

amount <= balance + credit_limit

26 do

balance := balance - amount

28 ensure

balance = old balance - amount

30 end

32 end

condition of these three routines is equivalent to having a modifies clause which
only lists the field balance of the current object (see Section 2.5). With this
information, the prover can deduce that the call on the object a2 has no influence
on a1, and thus the check instruction can be verified. Note that the prover knows
that the two objects a1 and a2 are different due to the translation of the create
instructions which uses an unused heap location for each created object (see
Section 3.6.2).

The reasoning to prove the second check instruction is the same. The calls on
a1 have no influence on a2 due to the automatically extracted modifies clauses.
Therefore the prover can verify the second assertion as well.

6.2 Formatter

The formatter example was proposed by Leavens, Leino and Müller [21] as an
open problem. The example shows the use of agents with open arguments.
Nordio et al. [27] have shown how to verify this example. However, they do not
implement a tool that can automatically prove this example. In this section, we
show this example which can be automatically proven by our tool.

Case Studies - Formatter 63

Listing 6.3: Eiffel : Formatter class

class FORMATTER

2
align_left (p: PARAGRAPH)

4 require

not p.is_left_aligned

6 do

−− Operation on ‘p ’
8 ensure

p.is_left_aligned

10 end

12 align_right (p: PARAGRAPH)

require

14 p.is_left_aligned

do

16 −− Operation on ‘p ’
ensure

18 not p.is_left_aligned

end

20
end

Listing 6.4: Eiffel : Paragraph class

class PARAGRAPH

2
format (proc: PROCEDURE [FORMATTER , TUPLE [PARAGRAPH]])

4 require

proc.precondition ([Current])

6 do

proc.call ([Current])

8 ensure

proc.postcondition ([Current])

10 end

12 end

The classes involved are shown in the Listings 6.3, 6.4, and 6.5. This example
defines a class FORMATTER which has features to change the alignment on the class
PARAGRAPH. The PARAGRAPH class has a routine format which takes an agent to
format itself. The format routine just calls the agent which is passed, using the
current object as the argument to the agent. The client class defines a routine
apply_align_left which takes a formatter and paragraph object. The formatter
is used to format the paragraph by calling the format routine on the paragraph
with an agent created from the formatter object. There are two interesting
problems in this example: how to specify the format routine of the PARAGRAPH

class, and how to prove the use of the agent in the CLIENT class.

The routine format in Listing 6.4 takes an agent and calls the agent with the
current object as an argument. For the call to the agent to be valid, the pre-
condition of the agent has to hold. As we do not know the contract of the agent
which is called, we move the responsibility to guarantee the precondition to the

64 Case Studies - Formatter

Listing 6.5: Eiffel : Formatter client

class CLIENT

2
apply_align_left (f: FORMATTER; p: PARAGRAPH)

4 require

not p.is_left_aligned

6 local

proc: PROCEDURE [FORMATTER , TUPLE [PARAGRAPH]]

8 do

proc:= agent f.align_left

10 p.format (proc)

ensure

12 p.is_left_aligned

end

14
end

client of the routine format. For this, we use the query precondition offered
by the class PROCEDURE. In the translation to Boogie, this query is treated spe-
cial. The methodology for agents introduces precondition predicates for agents
which depend on the number of open arguments. The routine precondition is
now translated to the precondition predicate with the appropriate number of
open arguments, which is defined in the background theory (see Section 3.3.3).
Also, we use a special translation for the Eiffel routine postcondition of the
class PROCEDURE. The routine postcondition is translated to the postcondition
predicate for agents, again depending on the number of open arguments. Using
the routines precondition and postcondition of the class PROCEDURE and their
special translation, we can express the specification of the routine format of the
class PARAGRAPH.

Since we have now specified the routine format, we can reason about the
client class which creates an agent and uses the format routine. The proof of the
routine apply_align_left of Listing 6.5 is done by using the agent methodology
described in Section 2.4. When the agent is created on line 9 in Listing 6.5,
the translation is generating assumptions to link the pre- and postcondition
of the routine align_left to the abstract predicates used for the agent pre-
and postcondition. These agent predicates match the pre- and postcondition
predicates which are used in the specification of the routine format. When the
routine format is called with the created agent, the prover can use the generated
assumptions to deduce that the precondition of format is satisfied, and therefore
assumes that the postcondition of format holds. With the assumption that
connects the concrete postcondition of format_left with the abstract predicate
used in the postcondition of format, the verifier can assume that the concrete
postcondition of format_left holds. Using this assumption, the verifier can
prove that the paragraph is left aligned after the execution of apply_align_left.

Case Studies - Command Pattern 65

Listing 6.6: Eiffel : Command class

class COMMAND

2
make (a_action: like action)

4 do

action := a_action

6 ensure

action = a_action

8 end

10 action: PROCEDURE [ANY , TUPLE [INTEGER]]

12 execute (a_arg: INTEGER)

require

14 action.precondition ([a_arg])

do

16 action.call ([a_arg])

ensure

18 action.postcondition ([a_arg])

end

20
end

6.3 Command Pattern

This example shows the command pattern [20, 13]. The code of the class COMMAND
is shown in Listing 6.6, and the code of the client class is shown in Listing 6.7.
The example shows the use of agents as attributes. For this, we define the class
COMMAND and define an attribute action which stores an agent taking an integer
as argument.

Looking at the routine execute in Listing 6.6, we see that the agent action

is called with the argument which is passed to execute. Like in the formatter
example, we need to prove that the precondition of the agent holds. We move
this obligation again to the client by using the precondition routine of the
class PROCEDURE. After the call to the agent, we know that the postcondition
of the routine used to create the agent holds. This information is forwarded
to the client by using the routine postcondition of the class PROCEDURE in the
postcondition of execute.

Listing 6.7 shows a client of the class COMMAND. The client creates an account
object and a command using the withdraw routine of the account class (the
account class is declared in Listing 6.2). The problem is now to prove the check
instruction after the call to execute.

First, we need to prove that we can execute the command. The precondition
of execute is the precondition of the agent stored in the command object. The
postcondition of make ensures that the passed agent is stored in the attribute
action. Therefore, we can conclude that the precondition of execute is the
precondition of the routine withdraw, which is satisfied by the given argument.
This implies that after the call to the routine execute, the postcondition of
execute holds. The postcondition of execute is the postcondition of the agent

66 Case Studies - Strategy Pattern

Listing 6.7: Eiffel : Command client

class CLIENT

2
feature

4
main

6 local

a: ACCOUNT

8 c: COMMAND

do

10 create a.make (100)

create c.make (agent a.withdraw (?))

12
c.execute (50)

14
check a.balance = 50 end

16 end

end

Listing 6.8: Eiffel : Operator strategy class

deferred class OPERATOR_STRATEGY

2
execute (a, b: INTEGER)

4 deferred

end

6
last_result: INTEGER

8
end

stored in the attribute action. Since we already know that the agent is the
routine withdraw, we know that the call to the command reduced the balance

field of the account object a. With this information, we can prove the check
instruction.

6.4 Strategy Pattern

The last example we present is the strategy pattern [20, 13]. For this, we
first define a deferred class OPERATOR_STRATEGY which is shown in Listing 6.8.
The strategy class has a routine execute which takes two integers as argument.
The result of the operation is then stored in the attribute last_result. A
possible implementation of this strategy class is shown in Listing 6.9. The class
ADDITION_STRATEGY inherits from the deferred strategy class and implements the
operation as an addition.

The strategy pattern now defines a context class which uses a strategy object
for an internal operation. The advantage of the pattern is, that the strategy
can be changed without changing the context class. The context class for this
example is shown in Listing 6.10. The routine apply_strategy takes also two

Case Studies - Strategy Pattern 67

Listing 6.9: Eiffel : Addition strategy class

class ADDITION_STRATEGY inherit OPERATOR_STRATEGY

2
execute (a, b: INTEGER)

4 do

last_result := a + b

6 ensure then

last_result = a + b

8 end

10 end

integer arguments and delegates the work to the strategy object. To retrieve
the result of applying the strategy, the context class offers a query last_result

which just returns the value of the last operation on the strategy object.

The client class from Listing 6.11 is creating a context object and initializes
it with a strategy of type ADDITION_STRATEGY. After applying the strategy to the
values 1 and 2, we want to prove that the result is 3.

This example shows two problems: we need to specify apply_strategy which
delegates the work to the strategy object, and we need to prove that the execu-
tion of the strategy does more than the static contract specifies.

In the postcondition of apply_strategy, we want to express that the execu-
tion of apply_strategy has the same effect as the call to execute on the strategy
object. One way would be to write the postcondition of execute again in the
postcondition of apply_strategy. This is not good enough, as this would only
cover the postcondition of the static type of execute. We want to express that
apply_strategy has the same effect as the postcondition of the routine execute

of the dynamic type of the strategy object. To do this, we use the postcondition
predicates we introduced in Section 2.3. These postcondition predicates denote
the postcondition of a routine using the dynamic type of the target object. To
express in the postcondition of apply_strategy that we ensure the postcondition
of the routine execute, we just have to ensure the postcondition predicate of the
routine execute. On line 16 in Listing 6.10 you can see how we encode this in
Eiffel: we use the postcondition query introduced by agents. This statement is
translated into the postcondition predicate of the agent routine, which is in this
example the routine execute. Using the postcondition predicates introduced for
dynamic invocation and the postcondition query of agents, we can express the
delegation in the postcondition of apply_strategy.

Using this specification for the routine apply_strategy and the special trans-
lation of its postcondition, we can look at the second problem: proving the check
instruction on line 9 of Listing 6.11. When the context object is created, we
pass a strategy object of type ADDITION_STRATEGY. Using the postcondition of
make, we know that the strategy object is stored in the strategy attribute of the
context object. Then, the routine apply_strategy is called. As the routine has
no precondition, we can just assume that the postcondition holds. According to
the previously mentioned encoding, the postcondition is actually the postcon-
dition predicate for the routine execute. Using the methodology introduced for

68 Case Studies - Strategy Pattern

Listing 6.10: Eiffel : Context class

class CONTEXT

2
make (a_strategy: OPERATOR_STRATEGY)

4 do

strategy := a_strategy

6 ensure

strategy = a_strategy

8 end

10 strategy: OPERATOR_STRATEGY

12 apply_strategy (a, b: INTEGER)

do

14 strategy.execute (a, b)

ensure

16 (agent strategy.execute).postcondition ([a, b])

end

18
last_result: INTEGER

20 do

Result := strategy.last_result

22 ensure

Result = strategy.last_result

24 end

26 end

Listing 6.11: Eiffel : Strategy client

class CLIENT

2
main

4 local

c: CONTEXT

6 do

create c.make (create {ADDITION_STRATEGY })

8 c.apply_strategy (1, 2)

check c.last_result = 3 end

10 end

12 end

Case Studies - Strategy Pattern 69

dynamic invocation, we can use the postcondition of the dynamic type of the
strategy object. Since we know that the dynamic type is ADDITION_STRATEGY,
we can assume the postcondition of execute from Listing 6.9 which states that
last_result has been set to the addition of the arguments. With this informa-
tion, the verifier can prove the check instruction.

Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we have developed the tool EVE Proofs which offers fully au-
tomated proofs for Eiffel. In addition to the basic instructions, the tool has
an automatic extraction of modifies clauses, a methodology to prove the use of
agents, and an approach to use the contracts of the dynamic type for routine
calls. The tool has been integrated in EVE.

Verification of Dynamic Invocation. We developed a methodology to
prove dynamic invocation. The pre- and postconditions of routines are ex-
pressed through abstract predicates. These predicates are then linked to the
concrete contracts based on the dynamic type. With this approach, we are
able to prove examples which would not be possible by using only the static
information.

In addition, these predicates can be used to express delegation. This enabled
us to prove the strategy pattern, even if the contract of the concrete strategy is
stronger than in the abstract strategy.

Verification of Agents. We were able to implement the proposed method-
ology to verify agents [27]. This allowed us to prove the formatter and archiver
example proposed by Leavens, Leino and Müller [21] as well as the command
pattern. In addition, we extended the methodology to handle framing for agents.
With this, the approach now considers all aspects of the specification of a rou-
tine.

Automatic Extraction of Modifies Clauses. The automatic extraction
of modifies clauses which we developed is very basic. The approach is good
enough to prove small examples without worrying about framing. The problem
of overapproximation and the lack of a method to specify changes to whole
object structures requires us to improve the framing in the future.

71

72 Conclusions - Future Work

User Interface. We have integrated the tool in EVE. It can handle multiple
classes at once, offering three different modes of operation: prove a class, prove
a cluster, and prove the whole system. This makes the tool very convenient to
use. The results of the verification are presented in a well-arranged way. This
makes the tool usable for all programmers.

7.2 Future Work

This thesis lays the ground for a lot of possible improvements. These can either
be more theoretical — providing new methodologies to proof program constructs
and translate them to Boogie — or practical — improving user experience and
integrating EVE Proofs with other tools. Following is a list of possible projects.

Generics. An important translation which is missing at the moment is the
translation for generic types. There are two aspects for this: The translation of
the definition of a generic class, and the translation of the use of generics. For
the definition of generics, the translation to Boogie has to take into account that
the class has to be correct for each possible generic derivation. In particular, the
class has to be correct for reference types and for expanded types. To translate
a call to a routine of a generic, the easiest solution is to create a translation for
each different generic derivation. In this way, you know the exact type in the
translation which simplifies the generation of the Boogie code.

The implementation of generics will allow a wide variety of examples to be
proven, as generics are needed for EVE Proofs to run code using the collection
classes from EiffelBase.

Exception Handling. Routines with rescue clauses are skipped by the ver-
ifier at the moment. Nordio et al. [29, 28] have developed an axiomatic and
operational semantics for Eiffel which includes exception handling. However, a
translation to Boogie needs to be developed.

Expanded Types. EVE Proofs does not support expanded types. Only the
basic use of integers and booleans is supported, as they are directly available
in Boogie as well. Expanded types pose a challenge for verification: each entity
which is possibly attached to an expanded type changes the semantics for com-
parison and reattachment. The equality for expanded types compares the object
contents instead of the references and reattachment of expanded types uses the
copy semantics instead of the reference semantics. A methodology which can
handle this has to be developed and then implemented in EVE Proofs.

Switching Methodologies. As there are multiple ways to encode Eiffel to
Boogie, it is not always obvious which solution to take. Each solution has its
own advantages and drawbacks. To compare different methodologies, we could
set up a system to choose between different encodings.

Conclusions - Future Work 73

Furthermore, one could add a translation using another theorem prover.
This could allow us to prove some programs that Boogie might have problems
with. Additionally, the translation to multiple theorem provers could be used to
verify different properties of the same program with different theorem provers,
exploiting their respective strengths and avoiding their weaknesses.

Framing. The automatic extraction of modifies clauses has limitations. One
cannot specify changes for whole object structures like arrays. When generics
are implemented, this will be a major restriction for specifying routines. One
way to resolve this situation would be to introduce something similar to the
asterisk (*) notation of Spec# to denote changes to all fields of an object.

Although we can use the dynamic type for the pre- and postcondition of a
routine call, we still use the static type for the frame condition. This can lead
to unsoundness in the system. The methodology for framing has to be extended
to use the dynamic type as well.

Invariants. The methodology for invariants has to take into account that
objects can temporarily violate the invariant, but also that an object can call
other objects while being in an inconsistent state. As this is not considered at the
moment, the current implementation of invariants can introduce unsoundness
in the system. A better implementation is needed which retains the soundness
of the system, for example by restricting either the expressiveness of invariants
or the points where an invariant can be broken. A look at Spec# is a good
starting point [15, 23].

Error Reporting. EVE Proofs shows an error for each violation found by
Boogie. The error messages are very basic and the additional information about
the error is limited. This can be improved in various ways:

• The error messages can be more elaborate.

• Additional information can be added to the error report, for example the
extracted modifies clause.

• For conditionals, Boogie provides a trace of the path that has been taken
when a violation occurred. This information can be shown to the user to
better understand where an error originated.

• The tool could suggest a solution to fix an error, for example adding a
new precondition.

Integrate MML. The specification language of Eiffel cannot express quanti-
fier expressions. The mathematical modeling library (MML) [34, 10] can help
to overcome this limitation. For this, the MML classes have to be represented
in Boogie, and then the calls to the model features can be mapped to the ap-
propriate features in Boogie.

74 Conclusions - Related Work

Integrate with Testing. Using the reasoning that a routine which is proven
to be correct does not need to be tested, the proof tool can be integrated with
the testing facilities of EiffelStudio. As EVE Proofs publishes events for the
results of the proofs, the testing tools can use these events to stop the tests for
features which are successfully proven.

User Experience. There are various ideas to enhance the user experience
when using EVE Proofs:

• Launch Boogie in an asynchronous way, so that EVE does not block while
Boogie is running.

• Store created Boogie code and only translate the classes which changed
since the last run of the verifier. This improves the speed of the translation.

• Do incremental proofs by only proving routines which changed since the
last run of the verifier. This improves the speed of the verification.

• Run the verifier in the background without the need to explicitly start the
proof.

7.3 Related Work

The Spec# programming system [16] is an automatic verifier for C#. The
translation of the basic instructions of Spec# to Boogie have been used as a
model for our translation. Müller and Ruskiewicz have extended Spec# to
handle C# delegates [26]. To tackle the frame problem, Spec# uses ownership.
Spec# is more powerful than EVE Proofs. However, it is also harder to use.
EVE Proofs implements a new encoding for inheritance which allows us to prove
programs that Spec# cannot prove.

The ESC/Java [19] system has been developed to verify Java classes which
use JML [17] for the specification. JML follows a similar approach as EVE
Proofs, since it does not alter the underlying programming language. Yet, JML
itself is already an extension of Java, where the specification has to be added as
specially formatted comments.

Distefano and Parkinson have implemented an automatic verifier for Java
programs called jStar [18]. This work implements the idea of abstract predicates
[30, 31] and handles framing with separation logic [32]. The tool can handle
interesting examples such as the visitor pattern.

Smans et al. propose an approach with implicit dynamic frames [35]. They
implemented the method in an experimental language which adds an accessibil-
ity predicate to the specification language. Writing and reading of a field is only
allowed if the field is accessible. With this information, they infer the framing
properties of a routine from the contract.

Schoeller has developed an experimental automatic verifier for Eiffel called
Ballet [33]. Ballet also translates Eiffel to Boogie code. To specify framing, it

Conclusions - Related Work 75

introduced modifies clauses in Eiffel. The general structure of the proof engine
we implemented is influenced by Ballet. Also, the translation for control flow
structures is taken from Ballet.

Listings

2.1 Eiffel : Dynamic invocation example 14
2.2 Eiffel : Agent example . 18
2.3 Eiffel : Signature of call . 19
2.4 Eiffel : Frame example . 22
2.5 Eiffel : Person class . 22
2.6 Eiffel : Frame inheritance . 23
2.7 Eiffel : Overapproximation . 24
2.8 Eiffel : Pure Marking Problem . 26
3.1 Boogie: Type Example . 27
3.2 Boogie: Function Example . 27
3.3 Boogie: Variable Example . 28
3.4 Boogie: Axiom Example . 28
3.5 Boogie: Procedure Example . 28
3.6 Boogie: Implementation Example 28
3.7 Eiffel : Naming example . 29
3.8 Boogie: Reference types . 30
3.9 Boogie: Heap model . 31
3.10 Boogie: Typing . 32
3.11 Boogie: Agent theory . 33
3.12 Eiffel : Person class . 34
3.13 Boogie: Code for basic fields . 34
3.14 Boogie: Boogie code for natural field 35
3.15 Boogie: Code for attached field 35
3.16 Eiffel : Interface of Account . 36
3.17 Boogie: Translation of routine make 37
3.18 Boogie: Translation of creation routine make 40
3.19 Eiffel : Pure routine . 40
3.20 Boogie: Pure routine . 41
3.21 Eiffel : Implementation example 42
3.22 Boogie: Implementation example 43
3.23 Eiffel : Conditional . 46
3.24 Boogie: Conditional . 47
3.25 Eiffel : Loop . 47
3.26 Boogie: Loop . 48
3.27 Boogie: Comment format for error tracing 48
6.1 Eiffel : Account client . 61
6.2 Eiffel : Account class . 62
6.3 Eiffel : Formatter class . 63
6.4 Eiffel : Paragraph class . 63

77

6.5 Eiffel : Formatter client . 64
6.6 Eiffel : Command class . 65
6.7 Eiffel : Command client . 66
6.8 Eiffel : Operator strategy class 66
6.9 Eiffel : Addition strategy class . 67
6.10 Eiffel : Context class . 68
6.11 Eiffel : Strategy client . 68

78

Bibliography

[1] Boogie. http://research.microsoft.com/boogie/.

[2] Eclipse Project. http://eclipse.org/.

[3] Eiffel Standard Ecma-367. http://www.ecma-international.org/
publications/standards/Ecma-367.htm.

[4] Eiffel Verification Environment (EVE). http://eve.origo.ethz.ch.

[5] EiffelStudio. http://dev.eiffel.com.

[6] EiffelStudio SVN repository. https://svn.origo.ethz.ch/
eiffelstudio/.

[7] EiffelStudio Tool Integration. http://dev.eiffel.com/Tool_
Integration_Development.

[8] EVE Proofs Examples SVN repository. https://svn.origo.ethz.ch/
eiffelstudio/branches/eth/eve/Src/examples/proofs/.

[9] Java Modeling Language (JML). http://www.cs.ucf.edu/~leavens/
JML/.

[10] Mathematical Modeling Library (MML). http://mml.origo.ethz.ch/.

[11] Microsoft Visual Studio. www.microsoft.com/visualstudio/.

[12] Spec#. http://research.microsoft.com/specsharp/.

[13] Karine Arnout. From patterns to components. PhD thesis, ETH Zürich,
2005.

[14] Mike Barnett, Bor-Yuh Evan Chang, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. Tech-
nical report, Microsoft Research, 2006.

[15] Mike Barnett, Robert Deline, Manuel Fähndrich, K. Rustan M. Leino, and
Wolfram Schulte. Verification of object-oriented programs with invariants.
Journal of Object Technology, 3, 2004.

[16] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
Programming System: An Overview. Technical report, Microsoft Research,
2004.

79

http://research.microsoft.com/boogie/
http://eclipse.org/
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://eve.origo.ethz.ch
http://dev.eiffel.com
https://svn.origo.ethz.ch/eiffelstudio/
https://svn.origo.ethz.ch/eiffelstudio/
http://dev.eiffel.com/Tool_Integration_Development
http://dev.eiffel.com/Tool_Integration_Development
https://svn.origo.ethz.ch/eiffelstudio/branches/eth/eve/Src/examples/proofs/
https://svn.origo.ethz.ch/eiffelstudio/branches/eth/eve/Src/examples/proofs/
http://www.cs.ucf.edu/~leavens/JML/
http://www.cs.ucf.edu/~leavens/JML/
http://mml.origo.ethz.ch/
www.microsoft.com/visualstudio/
http://research.microsoft.com/specsharp/

[17] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R.
Kiniry, Gary T. Leavens, Rustan, and Erik Poll. An overview of jml tools
and applications. International Journal on Software Tools for Technology
Transfer (STTT), V7(3):212–232, June 2005.

[18] Dino Distefano and Matthew J. Parkinson. jStar: Towards Practical Verifi-
cation for Java. In Gail E. Harris, editor, OOPSLA, pages 213–226. ACM,
2008.

[19] Cormac Flanagan, Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for java. SIGPLAN Not.,
37(5), May 2002.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[21] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and
verification challenges for sequential object-oriented programs. Form. Asp.
Comput., 19(2):159–189, 2007.

[22] K. Rustan M. Leino. This is Boogie 2. Technical report, Microsoft Research,
2008.

[23] K. Rustan M. Leino and Peter Müller. Modular verification of static class
invariants. In J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal
Methods (FM), volume 3582 of Lecture Notes in Computer Science, pages
26–42. Springer-Verlag, 2005.

[24] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992.

[25] Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-
Hall, Inc., 1997.

[26] Peter Müller and Joseph N. Ruskiewicz. A modular verification method-
ology for C# delegates. In U. Glässer and J.-R. Abrial, editors, Rigorous
Methods for Software Construction and Analysis, 2007. To appear.

[27] Martin Nordio, Cristiano Calcagno, Bertrand Meyer, and Peter Müller.
Reasoning about Function Objects. Technical Report 615, ETH Zürich,
2009.

[28] Martin Nordio, Cristiano Calcagno, Peter Müller, and Bertrand Meyer. A
Sound and Complete Program Logic for Eiffel. In M. Oriol, editor, TOOLS-
EUROPE 2009, Lecture Notes in Business and Information Processing,
2009. To appear.

[29] Martin Nordio, Peter Müller, and Bertrand Meyer. Proof-transforming
compilation of eiffel programs. In R. Paige, editor, TOOLS-EUROPE 2008,
Lecture Notes in Business and Information Processing. Springer-Verlag,
2008.

[30] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.
In POPL ’05, pages 247–258, New York, NY, USA, 2005. ACM.

80

[31] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction
and inheritance. In POPL ’08, pages 75–86. ACM, 2008.

[32] John C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In Proceedings of 17th Annual IEEE Symposium onLogic in Com-
puter Science, 2002.

[33] Bernd Schoeller. Making classes provable through contracts, models and
frames. PhD thesis, ETH Zürich, 2008.

[34] Bernd Schoeller, Tobias Widmer, and Bertrand Meyer. Making specifica-
tions complete through models. In Architecting Systems with Trustworthy
Components, volume 3938 of Notes in Computer Science. Springer-Verlag,
2003.

[35] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. In
ECOOP 2009 - Object-oriented Programming, 23rd European Conference,
Genova, Italy, July 6-10, 2009, Proceedings, July 2009.

81

	1 Introduction
	2 Verification Methodology
	2.1 Overview
	2.2 Basic Encodings
	2.2.1 Routine Specification
	2.2.2 Routine Calls

	2.3 Dynamic Invocation
	2.4 Agents
	2.5 Automatic Extraction of Modifies Clauses
	2.6 Pure Inference

	3 Translation to Boogie
	3.1 Introduction to Boogie
	3.2 Naming conventions
	3.3 Background Theory
	3.3.1 Basic Definitions
	3.3.2 Typing
	3.3.3 Agent Theory

	3.4 Attributes
	3.5 Routine Signature
	3.5.1 Procedure Definition
	3.5.2 Arguments
	3.5.3 Pre- and Postconditions
	3.5.4 Class Invariants
	3.5.5 Frame Condition
	3.5.6 Creation Routines
	3.5.7 Pure Functions

	3.6 Routine Implementation
	3.6.1 Structure
	3.6.2 Object creation
	3.6.3 Assignment
	3.6.4 Routine calls
	3.6.5 Agent Creation
	3.6.6 Agent Call
	3.6.7 Check Instruction

	3.7 Control Structures
	3.7.1 Conditional
	3.7.2 Loop

	3.8 Tracing Errors

	4 User Interface
	4.1 Starting a Proof
	4.2 Result Display

	5 Implementation
	5.1 Proof Engine
	5.2 User Interface

	6 Case Studies
	6.1 Account
	6.2 Formatter
	6.3 Command Pattern
	6.4 Strategy Pattern

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work
	7.3 Related Work

